scholarly journals Faculty Opinions recommendation of S-palmitoylation Is Required for the Control of Growth Cone Morphology of DRG Neurons by CNP-Induced cGMP Signaling.

Author(s):  
Hiroyuki Kamiguchi ◽  
Adam Guy
Neuron ◽  
2002 ◽  
Vol 35 (1) ◽  
pp. 51-63 ◽  
Author(s):  
Jakub M. Swiercz ◽  
Rohini Kuner ◽  
Jürgen Behrens ◽  
Stefan Offermanns
Keyword(s):  

Endocrinology ◽  
2013 ◽  
Vol 154 (10) ◽  
pp. 3784-3795 ◽  
Author(s):  
Laura Olbrich ◽  
Lisa Wessel ◽  
Ajeesh Balakrishnan-Renuka ◽  
Marion Böing ◽  
Beate Brand-Saberi ◽  
...  

In the last two decades, sensory neurons and Schwann cells in the dorsal root ganglia (DRG) were shown to express the rate-limiting enzyme of the steroid synthesis, cytochrome P450 side-chain cleavage enzyme (P450scc), as well as the key enzyme of progesterone synthesis, 3β-hydroxysteroid dehydrogenase (3β-HSD). Thus, it was well justified to consider that DRG neurons similarly are able to synthesize progesterone de novo from cholesterol. Because direct progesterone effects on axonal outgrowth in peripheral neurons have not been investigated up to now, the present study provides the first insights into the impact of exogenous progesterone on axonal outgrowth in DRG neurons. Our studies including microinjection and laser scanning microscopy demonstrate morphological changes especially in the neuronal growth cones after progesterone treatment. Furthermore, we were able to detect a distinctly enhanced motility only a few minutes after the start of progesterone treatment using time-lapse imaging. Investigation of the cytoskeletal distribution in the neuronal growth cone before, during, and after progesterone incubation revealed a rapid reorganization of actin filaments. To get a closer idea of the underlying receptor mechanisms, we further studied the expression of progesterone receptors in DRG neurons using RT-PCR and immunohistochemistry. Thus, we could demonstrate for the first time that classical progesterone receptor (PR) A and B and the recently described progesterone receptor membrane component 1 (PGRMC1) are expressed in DRG neurons. Antagonism of the classical progesterone receptors by mifepristone revealed that the observed progesterone effects are transmitted through PR-A and PR-B.


1993 ◽  
Vol 105 (1) ◽  
pp. 203-212 ◽  
Author(s):  
P. Clark ◽  
S. Britland ◽  
P. Connolly

Neurite growth cones detect and respond to guidance cues in their local environment that determine stereotyped pathways during development and regeneration. Micropatterns of laminin (which was found to adsorb preferentially to photolithographically defined hydrophobic areas of micropatterns) were here used to model adhesive pathways that might influence neurite extension. The responses of growth cones were determined by the degree of guidance of neurite extension and also by examining growth cone morphology. These parameters were found to be strongly dependent on the geometry of the patterned laminin, and on neuron type. Decreasing the spacing of multiple parallel tracks of laminin alternating with non-adhesive tracks, resulted in decreased guidance of chick embryo brain neurons. Single isolated 2 microns tracks strongly guided neurite extension whereas 2 microns tracks forming a 4 microns period multiple parallel pattern did not. Growth cones appear to be capable of bridging the narrow non-adhesive tracks, rendering them insensitive to the smaller period multiple parallel adhesive patterns. These observations suggest that growth cones would be unresponsive to the multiple adhesive cues such as would be presented by oriented extracellular matrix or certain axon fascicle structures, but could be guided by isolated adhesive tracks. Growth cone morphology became progressively simpler on progressively narrower single tracks. On narrow period multiple parallel tracks (which did not guide neurite extension) growth cones spanned a number of adhesive/non-adhesive tracks, and their morphology suggests that lamellipodial advance may be independent of the substratum by using filopodia as a scaffold. In addition to acting as guidance cues, laminin micropatterns also appeared to influence the production of primary neurites and their subsequent branching. On planar substrata, dorsal root ganglion neurons were multipolar, with highly branched neurite outgrowth whereas, on 25 microns tracks, neurite branching was reduced or absent, and neuron morphology was typically bipolar. These observations indicate the precision with which growth cone advance may be controlled by substrata and suggest a role for patterned adhesiveness in neuronal morphological differentiation, but also highlight some of the limitations of growth cone sensitivity to substratum cues.


1995 ◽  
Vol 131 (1) ◽  
pp. 119-129 ◽  
Author(s):  
C.H. Martenson ◽  
M.P. Sheetz ◽  
D.G. Graham
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document