Faculty Opinions recommendation of Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation.

Author(s):  
James Murphy
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yves Dondelinger ◽  
Tom Delanghe ◽  
Dario Priem ◽  
Meghan A. Wynosky-Dolfi ◽  
Daniel Sorobetea ◽  
...  

Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 341-350
Author(s):  
Jean T Greenberg ◽  
F Paul Silverman ◽  
Hua Liang

Abstract Salicylic acid (SA) is required for resistance to many diseases in higher plants. SA-dependent cell death and defense-related responses have been correlated with disease resistance. The accelerated cell death 5 mutant of Arabidopsis provides additional genetic evidence that SA regulates cell death and defense-related responses. However, in acd5, these events are uncoupled from disease resistance. acd5 plants are more susceptible to Pseudomonas syringae early in development and show spontaneous SA accumulation, cell death, and defense-related markers later in development. In acd5 plants, cell death and defense-related responses are SA dependent but they do not confer disease resistance. Double mutants with acd5 and nonexpressor of PR1, in which SA signaling is partially blocked, show greatly attenuated cell death, indicating a role for NPR1 in controlling cell death. The hormone ethylene potentiates the effects of SA and is important for disease symptom development in Arabidopsis. Double mutants of acd5 and ethylene insensitive 2, in which ethylene signaling is blocked, show decreased cell death, supporting a role for ethylene in cell death control. We propose that acd5 plants mimic P. syringae-infected wild-type plants and that both SA and ethylene are normally involved in regulating cell death during some susceptible pathogen infections.


2007 ◽  
Vol 9 (5) ◽  
pp. 550-555 ◽  
Author(s):  
Christopher P. Baines ◽  
Robert A. Kaiser ◽  
Tatiana Sheiko ◽  
William J. Craigen ◽  
Jeffery D. Molkentin

Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 57
Author(s):  
Rasmus Gustafsson

Human herpesvirus 6A (HHV-6A) is a common virus that has important immunomodulatory effects. Dendritic cells (DC) are key players in innate and adaptive immunity and are implicated in the pathogenesis of many human diseases, including infections. (1) Background: Previous studies have demonstrated suppressive effects of HHV-6A on key DC functions. (2) Methods: human monocyte derived dendritic cells were inoculated with HHV-6A and viral replication, cell viability, and release of high mobility group box 1 (HMGB1) protein from DC and of the cytokines IL-2, IL-4, IL-6, IL-10, TNF and IFN-γ after co-culture with allogenic CD4+ T cells were assessed. (3) Results: Nonproductive infection of HHV-6A in DC leads to titer-dependent cell death and the release of HMGB1 protein, and a Th2 polarization. (4) Conclusion: These immune responses aimed to clear the infection may also imply risks for inflammatory pathologies associated with HHV-6A such as multiple sclerosis.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Qiuyun Yuan ◽  
Wanchun Yang ◽  
Shuxin Zhang ◽  
Tengfei Li ◽  
Mingrong Zuo ◽  
...  

Abstract Background Malignant glioma exerts a metabolic shift from oxidative phosphorylation (OXPHOs) to aerobic glycolysis, with suppressed mitochondrial functions. This phenomenon offers a proliferation advantage to tumor cells and decrease mitochondria-dependent cell death. However, the underlying mechanism for mitochondrial dysfunction in glioma is not well elucidated. MTCH2 is a mitochondrial outer membrane protein that regulates mitochondrial metabolism and related cell death. This study aims to clarify the role of MTCH2 in glioma. Methods Bioinformatic analysis from TCGA and CGGA databases were used to investigate the association of MTCH2 with glioma malignancy and clinical significance. The expression of MTCH2 was verified from clinical specimens using real-time PCR and western blots in our cohorts. siRNA-mediated MTCH2 knockdown were used to assess the biological functions of MTCH2 in glioma progression, including cell invasion and temozolomide-induced cell death. Biochemical investigations of mitochondrial and cellular signaling alternations were performed to detect the mechanism by which MTCH2 regulates glioma malignancy. Results Bioinformatic data from public database and our cohort showed that MTCH2 expression was closely associated with glioma malignancy and poor patient survival. Silencing of MTCH2 expression impaired cell migration/invasion and enhanced temozolomide sensitivity of human glioma cells. Mechanistically, MTCH2 knockdown may increase mitochondrial OXPHOs and thus oxidative damage, decreased migration/invasion pathways, and repressed pro-survival AKT signaling. Conclusion Our work establishes the relationship between MTCH2 expression and glioma malignancy, and provides a potential target for future interventions.


Sign in / Sign up

Export Citation Format

Share Document