Faculty Opinions recommendation of Apparent stiffness of vimentin intermediate filaments in living cells and its relation with other cytoskeletal polymers.

Author(s):  
Paul Janmey
2020 ◽  
Vol 1867 (8) ◽  
pp. 118726 ◽  
Author(s):  
Mariano Smoler ◽  
Giovanna Coceano ◽  
Ilaria Testa ◽  
Luciana Bruno ◽  
Valeria Levi

1989 ◽  
Vol 12 (3) ◽  
pp. 127-138 ◽  
Author(s):  
B. Mittal ◽  
J. M. Sanger ◽  
J. W. Sanger

1983 ◽  
Vol 61 (1) ◽  
pp. 87-105
Author(s):  
I.C. Summerhayes ◽  
D. Wong ◽  
L.B. Chen

The laser dye rhodamine 123 specifically stains mitochondria in living cells and facilitates the observation of changes in mitochondrial distribution in single cells under a variety of experimental conditions. Visualization of mitochondria in a number of cell lines followed by processing of these cells to study different cytoskeletal elements by indirect immunofluorescence, revealed good but not absolute correlation between mitochondria and microtubules or intermediate filaments. Mitochondria and microfilament distribution within the same cell did not show such a correlation. On the basis of observations made by various experimental approaches, we suggest that mitochondrial distribution is under the strong influence of the two systems, microtubules and intermediate filaments. Neither plays an absolute role but one seems able to play a more dominant role in the absence of the other.


2018 ◽  
Author(s):  
TingTing Chen ◽  
HuiWen Wu ◽  
YuXuan Wang ◽  
JinJun Shan ◽  
JiaRui Zhang ◽  
...  

SUMMARYThe nucleus is the most prominent organelle in eukaryotic cells, and its deformation depends on interactions between the nuclear lamina (NL) and cytoskeleton structural tensions. The structural tensions can be quantified at a pico-Newton (pN) level using a genetically encoded optical probe. In living cells, NL tensions countered the 4.26pN resting strain imposed competitively by cytoskeletal tension. The depolymerization of microfilaments or microtubules drove an aberrant increase in outward osmotic pressure through the production of mass protein-nanoparticles. The osmotic pressure also served as a directional converter of inward cytoskeletal force, and contributed to the outward expansion of NL via the passive pull of intermediate filaments (IFs). The NL, but not IFs, can remotely detect extracellular osmosis pressure alterations, which are closely associated with highly polarized microfilament and microtubule structures and their directional force activities. The oxidative-induced increase of NL tension results from intracellular hyper-osmosis, associated closely with protein-nanoparticles production elicited by cofilin and stathmin activation. These data reveal that intracellular steerable forces interact direction-dependently to control NL tension in terms of their magnitude and vectors.


1983 ◽  
Vol 97 (5) ◽  
pp. 1476-1490 ◽  
Author(s):  
J Wehland ◽  
M C Willingham

A rat monoclonal antibody against yeast alpha-tubulin (clone YL 1/2; Kilmartin, J. V., B. Wright, and C. Milstein, 1982, J. Cell Biol., 93:576-582) that reacts specifically with the tyrosylated form of alpha-tubulin and readily binds to tubulin in microtubules when injected into cultured cells (see Wehland, J., M. C. Willingham, and I. V. Sandoval, 1983, J. Cell Biol., 97:1467-1475) was used to study microtubule organization and function in living cells. Depending on the concentration of YL 1/2 that was injected the following striking effects were observed: (a) When injected at a low concentration (2 mg IgG/ml in the injection solution), where microtubules were decorated without changing their distribution, intracellular movement of cell organelles (saltatory movement) and cell translocation were not affected. Intermediate concentrations (6 mg IgG/ml) that induced bundling but no perinuclear aggregation of microtubules abolished saltatory movement and cell translocation, and high concentrations (greater than 12 mg IgG/ml) that induced perinuclear aggregation of microtubules showed the same effect. (b) YL 1/2, when injected at intermediate and high concentrations, arrested cells in mitosis. Such cells showed no normal spindle structures. (c) Injection of an intermediate concentration of YL 1/2 that stopped saltatory movement caused little or no aggregation of intermediate filaments and no dispersion of the Golgi complex. After injection of high concentrations, resulting in perinuclear aggregation of microtubules, intermediate filaments formed perinuclear bundles and the Golgi complex became dispersed analogous to results obtained after treatment of cells with colcemid. (d) When rhodamine-conjugated YL 1/2 was injected at concentrations that stopped saltatory movement and arrested cells in mitosis, microtubule structures could be visualized and followed for several hours in living cells by video image intensification microscopy. They showed little or no change in distribution and organization during observation, even though these microtubule structures appeared not to be stabilized by injected YL 1/2 since they were readily depolymerized by colcemid or cold treatment and repolymerized upon drug removal or rewarming to 37 degrees C, respectively. These results are discussed in terms of the participation of microtubules in cellular activities such as cell movement and cytoplasmic organization and in terms of the specificity of YL 1/2 for the tyrosylated form of alpha-tubulin.


2019 ◽  
Vol 116 (35) ◽  
pp. 17175-17180 ◽  
Author(s):  
Jiliang Hu ◽  
Yiwei Li ◽  
Yukun Hao ◽  
Tianqi Zheng ◽  
Satish K. Gupta ◽  
...  

In many developmental and pathological processes, including cellular migration during normal development and invasion in cancer metastasis, cells are required to withstand severe deformations. The structural integrity of eukaryotic cells under small deformations has been known to depend on the cytoskeleton including actin filaments (F-actin), microtubules (MT), and intermediate filaments (IFs). However, it remains unclear how cells resist severe deformations since both F-actin and microtubules yield or disassemble under moderate strains. Using vimentin containing IFs (VIFs) as a model for studying the large family of IF proteins, we demonstrate that they dominate cytoplasmic mechanics and maintain cell viability at large deformations. Our results show that cytoskeletal VIFs form a stretchable, hyperelastic network in living cells. This network works synergistically with other cytoplasmic components, substantially enhancing the strength, stretchability, resilience, and toughness of cells. Moreover, we find the hyperelastic VIF network, together with other quickly recoverable cytoskeletal components, forms a mechanically robust structure which can mechanically recover after damage.


2018 ◽  
Author(s):  
Jiliang Hu ◽  
Yiwei Li ◽  
Yukun Hao ◽  
Tianqi Zheng ◽  
German Alberto Parada ◽  
...  

AbstractIn many normal and abnormal physiological processes, including cellular migration during normal development and invasion in cancer metastasis, cells are required to withstand severe deformations. The structural integrity of eukaryotic cells under small deformations has been known to depend on the cytoskeleton including actin filaments (F-actin), microtubules and intermediate filaments (IFs). However, it remains unclear how cells resist severe deformations since both F-actin and microtubules fluidize or disassemble under moderate strains. Here, we demonstrate that vimentin intermediate filaments (VIFs), a marker of mesenchymal cells, dominate cytoplasmic mechanics at large deformations. Our results show that cytoskeletal VIFs form a stretchable, hyperelastic network. This network works synergistically with other dissipative cytoplasmic components, substantially enhancing the strength, stretchability, resilience and toughness of the living cytoplasm.


1989 ◽  
Vol 109 (5) ◽  
pp. 2045-2055 ◽  
Author(s):  
C Lee ◽  
M Ferguson ◽  
L B Chen

To study the construction of the ER, we used the microtubule-disrupting drug nocodazole to induce the complete breakdown of ER structure in living cells followed by recovery in drug-free medium, which regenerates the ER network within 15 min. Using the fluorescent dye 3,3'-dihexyloxacarbocyanine iodide to visualize the ER, we have directly observed the network construction process in living cells. In these experiments, the ER network was constructed through an iterative process of extension, branching, and intersection of new ER tubules driven by the ER motility previously described as tubule branching. We have tested the cytoskeletal requirements of this process. We find that newly formed ER tubules are aligned with single microtubules but not actin fibers or vimentin intermediate filaments. Microtubule polymerization preceded the extension of ER tubules and, in experiments with a variety of different drugs, appeared to be a necessary condition for the ER network formation. Furthermore, perturbations of the pattern of microtubule polymerization with microtubule-specific drugs caused exactly correlated perturbations of the pattern of ER construction. Induction of abnormally short, nonintersecting microtubules with 20 microM taxol prevented the ER network formation; ER tubules only extended along the few microtubules contacting the aggregated ER membranes. This requirement for a continuous network of intersecting microtubules indicates that ER network formation takes place through the branching and movement of ER membranes along microtubules. Cytochalasin B had no apparent effect on the construction of the ER network during recovery, despite apparently complete disruption of actin fibers as stained by phalloidin. Blockage of protein synthesis and disorganization of intermediate filaments with cycloheximide pretreatment also failed to perturb ER construction.


Author(s):  
Kent McDonald

At the light microscope level the recent developments and interest in antibody technology have permitted the localization of certain non-microtubule proteins within the mitotic spindle, e.g., calmodulin, actin, intermediate filaments, protein kinases and various microtubule associated proteins. Also, the use of fluorescent probes like chlorotetracycline suggest the presence of membranes in the spindle. Localization of non-microtubule structures in the spindle at the EM level has been less rewarding. Some mitosis researchers, e.g., Rarer, have maintained that actin is involved in mitosis movements though the bulk of evidence argues against this interpretation. Others suggest that a microtrabecular network such as found in chromatophore granule movement might be a possible force generator but there is little evidence for or against this view. At the level of regulation of spindle function, Harris and more recently Hepler have argued for the importance of studying spindle membranes. Hepler also believes that membranes might play a structural or mechanical role in moving chromosomes.


Author(s):  
R. Y. Tsien ◽  
A. Minta ◽  
M. Poenie ◽  
J.P.Y. Kao ◽  
A. Harootunian

Recent technical advances now enable the continuous imaging of important ionic signals inside individual living cells with micron spatial resolution and subsecond time resolution. This methodology relies on the molecular engineering of indicator dyes whose fluorescence is strong and highly sensitive to ions such as Ca2+, H+, or Na+, or Mg2+. The Ca2+ indicators, exemplified by fura-2 and indo-1, derive their high affinity (Kd near 200 nM) and selectivity for Ca2+ to a versatile tetracarboxylate binding site3 modeled on and isosteric with the well known chelator EGTA. The most commonly used pH indicators are fluorescein dyes (such as BCECF) modified to adjust their pKa's and improve their retention inside cells. Na+ indicators are crown ethers with cavity sizes chosen to select Na+ over K+: Mg2+ indicators use tricarboxylate binding sites truncated from those of the Ca2+ chelators, resulting in a more compact arrangement of carboxylates to suit the smaller ion.


Sign in / Sign up

Export Citation Format

Share Document