mechanical tension
Recently Published Documents


TOTAL DOCUMENTS

320
(FIVE YEARS 66)

H-INDEX

43
(FIVE YEARS 4)

2021 ◽  
Vol 16 (12) ◽  
pp. T12003
Author(s):  
A.M. Baldini ◽  
G. Cavoto ◽  
F. Cei ◽  
M. Chiappini ◽  
G. Chiarello ◽  
...  

Abstract Ultra-thin metallic anode and cathode wires are frequently employed in low-mass gaseous detectors for precision experiments, where the amount of material crossed by charged particles must be minimised. We present here the results of an analysis of the mechanical stress and chemical corrosion effects observed in 40 and 50 μm diameter silver plated aluminum wires mounted within the volume of the MEG II drift chamber, which caused the breakage of about one hundred wires (over a total of ≈ 12000). This analysis is based on the careful inspection of the broken wires by means of optical and electronic microscopes and on a detailed recording of all breaking incidents. We present a simple empirical model which relates the number of broken wires to their exposure time to atmospheric relative humidity and to their mechanical tension, which is necessary for mechanical stability in the presence of electrostatic fields of several kV/cm. Finally we discuss how wire breakages can be avoided or at least strongly reduced by operating in controlled atmosphere during the mounting stages of the wires within the drift chamber and by choosing a 25 % thicker wire diameter, which has very small effects on the detector resolution and efficiency and can be obtained by using a safer fabrication technique.


2021 ◽  
Author(s):  
Qiyan Mao ◽  
Achyuth Acharya ◽  
Alejandra Rodriguez-delaRosa ◽  
Fabio Marchiano ◽  
Benoit Dehapiot ◽  
...  

Human muscle is a hierarchically organised tissue with its contractile cells called myofibers packed into large myofiber bundles. Each myofiber contains periodic myofibrils built by hundreds of contractile sarcomeres that generate large mechanical forces. To better understand the mechanisms that coordinate human muscle morphogenesis from tissue to molecular scales, we adopted a simple in vitro system using induced pluripotent stem cell-derived human myogenic precursors. When grown on an unrestricted two-dimensional substrate, developing myofibers spontaneously align and self-organise into higher-order myofiber bundles, which grow and consolidate to stable sizes. Following a transcriptional boost of sarcomeric components, myofibrils assemble into chains of periodic sarcomeres that emerge across the entire myofiber. By directly probing tension we found that tension build-up precedes sarcomere assembly and increases within each assembling myofibril. Furthermore, we found that myofiber ends stably attach to other myofibers using integrin-based attachments and thus myofiber bundling coincides with stable myofiber bundle attachment in vitro. A failure in stable myofiber attachment results in a collapse followed by a disassembly of the myofibrils. Overall, our results strongly suggest that mechanical tension across sarcomeric components as well as between differentiating myofibers is key to coordinate the multi-scale self-organisation of muscle morphogenesis.


Author(s):  
Yiqian Luo ◽  
Jie Li ◽  
Baoqin Li ◽  
Yuanliang Xia ◽  
Hengyi Wang ◽  
...  

The behavior of nerve cells plays a crucial role in nerve regeneration. The mechanical, topographical, and electrical microenvironment surrounding nerve cells can activate cellular signaling pathways of mechanical transduction to affect the behavior of nerve cells. Recently, biological scaffolds with various physical properties have been developed as extracellular matrix to regulate the behavior conversion of nerve cell, such as neuronal neurite growth and directional differentiation of neural stem cells, providing a robust driving force for nerve regeneration. This review mainly focused on the biological basis of nerve cells in mechanical transduction. In addition, we also highlighted the effect of the physical cues, including stiffness, mechanical tension, two-dimensional terrain, and electrical conductivity, on neurite outgrowth and differentiation of neural stem cells and predicted their potential application in clinical nerve tissue engineering.


2021 ◽  
Author(s):  
Shafali Gupta ◽  
Kinga Duszyc ◽  
Suzie Verma ◽  
Srikanth Budnar ◽  
Xuan Liang ◽  
...  

Epithelia migrate as physically coherent populations of cells. Earlier studies revealed that mechanical stress accumulates in these cellular layers as they move. These stresses are characteristically tensile in nature and have often been inferred to arise when moving cells pull upon the cell-cell adhesions that hold them together. We now report that epithelial tension at adherens junctions between migrating cells also increases due to an increase in RhoA-mediated junctional contractility. We find that active RhoA levels were stimulated by p114 RhoGEF at the junctions between migrating MCF-7 monolayers, and this was accompanied by increased levels of actomyosin and mechanical tension. Applying a strategy to restore active RhoA specifically at adherens junctions by manipulating its scaffold, anillin, we found that this junctional RhoA signal was necessary to stabilize junctional E-cadherin during epithelial migration and promoted orderly collective movement. We suggest that stabilization of E-cadherin by RhoA serves to increase cell-cell adhesion against the mechanical stresses of migration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Krishna Neupane ◽  
Meng Zhao ◽  
Aaron Lyons ◽  
Sneha Munshi ◽  
Sandaru M. Ileperuma ◽  
...  

AbstractThe RNA pseudoknot that stimulates programmed ribosomal frameshifting in SARS-CoV-2 is a possible drug target. To understand how it responds to mechanical tension applied by ribosomes, thought to play a key role during frameshifting, we probe its structural dynamics using optical tweezers. We find that it forms multiple structures: two pseudoknotted conformers with different stability and barriers, and alternative stem-loop structures. The pseudoknotted conformers have distinct topologies, one threading the 5′ end through a 3-helix junction to create a knot-like fold, the other with unthreaded 5′ end, consistent with structures observed via cryo-EM and simulations. Refolding of the pseudoknotted conformers starts with stem 1, followed by stem 3 and lastly stem 2; Mg2+ ions are not required, but increase pseudoknot mechanical rigidity and favor formation of the knot-like conformer. These results resolve the SARS-CoV-2 frameshift signal folding mechanism and highlight its conformational heterogeneity, with important implications for structure-based drug-discovery efforts.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yang Wang ◽  
Binxi Li ◽  
Hao Xu ◽  
Shulin Du ◽  
Ting Liu ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
B. Buchmann ◽  
L. K. Engelbrecht ◽  
P. Fernandez ◽  
F. P. Hutterer ◽  
M. K. Raich ◽  
...  

AbstractEpithelial branch elongation is a central developmental process during branching morphogenesis in diverse organs. This fundamental growth process into large arborized epithelial networks is accompanied by structural reorganization of the surrounding extracellular matrix (ECM), well beyond its mechanical linear response regime. Here, we report that epithelial ductal elongation within human mammary organoid branches relies on the non-linear and plastic mechanical response of the surrounding collagen. Specifically, we demonstrate that collective back-and-forth motion of cells within the branches generates tension that is strong enough to induce a plastic reorganization of the surrounding collagen network which results in the formation of mechanically stable collagen cages. Such matrix encasing in turn directs further tension generation, branch outgrowth and plastic deformation of the matrix. The identified mechanical tension equilibrium sets a framework to understand how mechanical cues can direct ductal branch elongation.


Science ◽  
2021 ◽  
Vol 372 (6540) ◽  
pp. eaba2374 ◽  
Author(s):  
Shamik Mascharak ◽  
Heather E. desJardins-Park ◽  
Michael F. Davitt ◽  
Michelle Griffin ◽  
Mimi R. Borrelli ◽  
...  

Skin scarring, the end result of adult wound healing, is detrimental to tissue form and function. Engrailed-1 lineage–positive fibroblasts (EPFs) are known to function in scarring, but Engrailed-1 lineage–negative fibroblasts (ENFs) remain poorly characterized. Using cell transplantation and transgenic mouse models, we identified a dermal ENF subpopulation that gives rise to postnatally derived EPFs by activating Engrailed-1 expression during adult wound healing. By studying ENF responses to substrate mechanics, we found that mechanical tension drives Engrailed-1 activation via canonical mechanotransduction signaling. Finally, we showed that blocking mechanotransduction signaling with either verteporfin, an inhibitor of Yes-associated protein (YAP), or fibroblast-specific transgenic YAP knockout prevents Engrailed-1 activation and promotes wound regeneration by ENFs, with recovery of skin appendages, ultrastructure, and mechanical strength. This finding suggests that there are two possible outcomes to postnatal wound healing: a fibrotic response (EPF-mediated) and a regenerative response (ENF-mediated).


2021 ◽  
Vol 153 (5) ◽  
Author(s):  
Sarah R. Clippinger ◽  
Paige E. Cloonan ◽  
Wei Wang ◽  
Lina Greenberg ◽  
W. Tom Stump ◽  
...  

Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales, from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. In this study, we examine an HCM mutation in troponin T, R92Q, for which several models explaining its effects in disease have been put forward. We demonstrate that the primary molecular insult driving disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. Computational modeling shows that the increased cellular force is consistent with the molecular mechanism. These changes in cellular contractility cause downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis of familial HCM, leading to activation of adaptive mechanobiological signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document