scholarly journals Faculty Opinions recommendation of Single-cell RNA-seq with spike-in cells enables accurate quantification of cell-specific drug effects in pancreatic islets.

Author(s):  
Jesse Gillis ◽  
Stephan Fischer
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Brenda Marquina-Sanchez ◽  
Nikolaus Fortelny ◽  
Matthias Farlik ◽  
Andhira Vieira ◽  
Patrick Collombat ◽  
...  

Author(s):  
Noriyuki Satoh ◽  
Hitoshi Tominaga ◽  
Masato Kiyomoto ◽  
Kanako Hisata ◽  
Jun Inoue ◽  
...  

Among chordate taxa, the cephalochordates diverged earlier than urochordates and vertebrates; thus, they retain unique, primitive developmental features. In particular, the amphioxus notochord has muscle-like properties, a feature not seen in urochordates or vertebrates. Amphioxus contains two Brachyury genes, Bra1 and Bra2. Bra2 is reportedly expressed in the blastopore, notochord, somites, and tail bud, in contrast to a low level of Bra1 expression only in notochord. To distinguish the expression profiles of the two Brachyury genes at the single-cell level, we carried out single-cell RNA-seq (scRNA-seq) analysis using the amphioxus, Branchiostoma japonicum. This scRNA-seq analysis classified B. japonicum embryonic cells into 15 clusters at developmental stages from midgastrula to early swimming larva. Brachyury was expressed in cells of clusters 4, 5, 8, and 9. We first confirmed that cluster 8 comprises cells that form somites since this cluster specifically expresses four myogenic factor genes. Cluster 9 contains a larger number of cells with high levels of Bra2 expression and a smaller number of cells with Bra1 expression. Simultaneous expression in cluster 9 of tool-kit genes, including FoxA, Goosecoid, and hedgehog, showed that this cluster comprises cells that form the notochord. Expression of Bra2, but not Bra1, in cells of clusters 4 and 5 at the gastrula stage together with expression of Wnt1 and Caudal indicates that clusters 4 and 5 comprise cells of the blastopore, which contiguously form the tail bud. In addition, Hox1, Hox3, and Hox4 were highly expressed in Bra2-expressing clusters 4, 5, 8, and 9 in a temporally coordinated manner, suggesting roles of anterior Hox genes in specification of mesodermal organs, including somites, notochord, and tail bud. This scRNA-seq analysis therefore highlights differences between the two Brachyury genes in relation to embryonic regions in which they are expressed and their levels of expression. Bra2 is the ancestral Brachyury in amphioxus, since expression in the blastopore is shared with other deuterostomes. On the other hand, Bra1 is a duplicate copy and likely evolved a supplementary function in notochord and somite formation in the Branchiostoma lineage.


2019 ◽  
Vol 29 (3) ◽  
pp. 539-544 ◽  
Author(s):  
Yue J. Wang ◽  
Klaus H. Kaestner

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii412-iii413
Author(s):  
Bradley Gampel ◽  
Luca Szalontay ◽  
Wenting Zhao ◽  
James Garvin ◽  
Chankrit Sethi ◽  
...  

Abstract Children with relapsed brain tumors are less responsive to treatment. These children often receive therapies without having any robust predictive method of potential benefit. Acute slice culturing(ASC) is a methodology permitting freshly operated tumor to undergo a culturing process preserving the tumor’s micro-environment. With the current study, we investigated the feasibility of obtaining therapeutically meaningful data in a timely manner (3–5 days), performing direct drug testing and single cell sequencing using ASC. Previously, we have combined ex vivo slices of intact, patient-derived Glioblastoma tissue with single-cell RNA-seq for small-scale drug screening and assessment of patient and cell type-specific drug responses. We generated slices from preclinical mouse glioma models and surgical specimens from adult Glioblastoma patients, as well as from children with relapsed Ependymomas, Medulloblastomas, and Gliomas. We demonstrated that these acute slices preserved both the tumor heterogeneity and tumor microenvironment observed in single-cell RNA-seq of cells directly isolated from tumor tissue. Testing drug responses, we then treated tissue slices from the Glioblastoma mouse models and different patients with multiple drugs and combinations. This technique allowed us to identify drug-induced transcriptional responses in specific subpopulations of tumor cells, patient-specific drug sensitivities, and drug effects conserved in both mouse and human tumors. Preliminary data suggests that we can apply this procedure within 5–7 days and provide real-time drug screening/single cell sequencing ASC results to Recurrent/ Progressive pediatric Low-Grade Gliomas, High Grade Gliomas, Ependymomas and Medulloblastomas.


Sign in / Sign up

Export Citation Format

Share Document