scholarly journals Faculty Opinions recommendation of Transcription factor-driven alternative localization of Cryptococcus neoformans superoxide dismutase.

Author(s):  
Guilhem Janbon
2021 ◽  
pp. 100391
Author(s):  
Aaron D. Smith ◽  
Sarela Garcia-Santamarina ◽  
Martina Ralle ◽  
David R. Loiselle ◽  
Timothy A. Haystead ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 882
Author(s):  
Masood Alam Khan ◽  
Arif Khan ◽  
Mohd Azam ◽  
Khaled S. Allemailem ◽  
Faris Alrumaihi ◽  
...  

Cryptococcus neoformans infections rose sharply due to rapid increase in the numbers of immunocompromised individuals in recent years. Treatment of Cryptococcosis in immunocompromised persons is largely very challenging and hopeless. Hence, this study aimed to determine the activity of ellagic acid (EA) in the treatment of C. neoformans in cyclophosphamide injected leukopenic mice. A liposomal formulation of ellagic acid (Lip-EA) was prepared and characterized, and its antifungal activity was assessed in comparison to fluconazole (FLZ). The efficacy of the drug treatment was tested by assessing survival rate, fungal burden, and histological analysis in lung tissues. The safety of the drug formulations was tested by investigating hepatic, renal function, and antioxidant levels. The results of the present work demonstrated that Lip-EA, not FLZ, effectively eliminated C. neoformans infection in the leukopenic mice. Mice treated with Lip-EA (40 mg/kg) showed 70% survival rate and highly reduced fungal burden in their lung tissues, whereas the mice treated with FLZ (40 mg/kg) had 20% survival rate and greater fungal load in their lungs. Noteworthy, Lip-EA treatment alleviated cyclophosphamide-induced toxicity and restored hepatic and renal function parameters. Moreover, Lip-EA treatment restored the levels of superoxide dismutase and reduced glutathione and catalase in the lung tissues. The effect of FLZ or EA or Lip-EA against C. neoformans infection was assessed by the histological analysis of lung tissues. Lip-EA effectively reduced influx of inflammatory cells, thickening of alveolar walls, congestion, and hemorrhage. The findings of the present study suggest that Lip-EA may prove to be a promising therapeutic formulation against C. neoformans in immunocompromised persons.


Author(s):  
Hugo Costa Paes ◽  
Lorena da Silveira Derengowski ◽  
Luisa Defranco Ferreira Peconick ◽  
Patrícia Albuquerque ◽  
Georgios Joannis Pappas ◽  
...  

2003 ◽  
Vol 71 (1) ◽  
pp. 173-180 ◽  
Author(s):  
Gary M. Cox ◽  
Thomas S. Harrison ◽  
Henry C. McDade ◽  
Carlos P. Taborda ◽  
Garrett Heinrich ◽  
...  

ABSTRACT Superoxide dismutase (SOD) is an enzyme that converts superoxide radicals into hydrogen peroxide and molecular oxygen and has been shown to contribute to the virulence of many human-pathogenic bacteria through its ability to neutralize toxic levels of reactive oxygen species generated by the host. SOD has also been speculated to be important in the pathogenesis of fungal infections, but the role of this enzyme has not been rigorously investigated. To examine the contribution of SOD to the pathogenesis of fungal infections, we cloned the Cu,Zn SOD-encoding gene (SOD1) from the human-pathogenic yeast Cryptococcus neoformans and made mutants via targeted disruption. The sod1 mutant strains had marked decreases in SOD activity and were strikingly more susceptible to reactive oxygen species in vitro. A sod1 mutant was significantly less virulent than the wild-type strain and two independent reconstituted strains, as measured by cumulative survival in the mouse inhalational model. In vitro studies established that the sod1 strain had attenuated growth compared to the growth of the wild type and a reconstituted strain inside macrophages producing reduced amounts of nitric oxide. These findings demonstrate that (i) the Cu,Zn SOD contributes to virulence but is not required for pathogenicity in C. neoformans; (ii) the decreased virulence of the sod1 strain may be due to increased susceptibility to oxygen radicals within macrophages; and (iii) other antioxidant defense systems in C. neoformans can compensate for the loss of the Cu,Zn SOD in vivo.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1029-1029
Author(s):  
Jihyun Song ◽  
Donghoon Yoon ◽  
Perumal Thiagarajan ◽  
Josef T. Prchal

Abstract Abstract 1029 Red blood cells (RBCs) continuously transport large amount of oxygen over their life time and require precise mechanism to protect themselves from oxidative stress. RBCs cannot respond to rapid oxygen changes by synthesizing enzymes and other proteins. Chronic hypoxia enhances erythropoiesis with ensuing polycythemia. With return to normoxia, red cell mass is reduced by neocytolysis, characterized by selective hemolysis of the young RBCs. Neocytolysis was described in astronauts, in those descending from high-altitude, and in newborn babies leaving hypoxic environment of uterus. While it has been suggested that neocytolysis is caused by very low erythropoietin levels, its molecular basis remains obscure. However, we argue against this postulate since RBCs lack pathway for erythropoietin signaling. We hypothesize that rapid changes of hypoxia-regulated hypoxia-inducible transcription factors (HIFs) regulated genes (other than erythropoietin) may be responsible, one such a gene (BNIP3L/NIX) regulates mitochondrial autophagy. Upon normoxic return young RBCs generated in hypoxia cannot cope because of decreased levels of oxidant protecting defenses regulated by HIF-dependent FOXO3a transcription factor. In order to test this hypothesis, we created an animal model depicted in Figure 1. We placed C57/BL6 mice in a hypoxia chamber at 12 % O2, (equivalent to 4500 m of altitude) for 10 days and then returned them to a normoxic condition. We measured hematocrit levels and reticulocyte count before and after hypoxia treatment.Fig. 1Hematocrit level and reticulocyte count before hypoxia and post hypoxiaFig. 1. Hematocrit level and reticulocyte count before hypoxia and post hypoxia Legend: BH: Before Hypoxia, PH: Post Hypoxia *; P value ≤ 0.05, **; P value ≤0.01, ***; P value ≤0.001, P value calculated using student T test comparing values before hypoxia. Epo levels increased 1.6 fold during hypoxia and then reduced up to undetectable level at PH day 4. Then Epo gradually increased to ∼3 fold during PH day 10∼28. During PH day 10∼21, the mice became anemic, even though Epo and reticulocytes remained high. These results suggest that neocytolysis occurs after several days of exposure to normoxia and it is not caused by Epo mechanism. To investigate the molecular basis of the observed neocytolysis in this mouse model, we measured the mitochondrial content in reticulocytes, anti-oxidative enzyme activities (glutathione peroxidase and reductase, catalase, and superoxide dismutase) that scavenge reactive oxygen species in RBCs, possibly coexistent with up-regulation of mitochondrial content upon normoxic return. Reticulocytes at returning normoxia generated more mitochondria several days after normoxic return, In contrast catalase activity was reduced during hypoxia and at PH day 4, but by PH day 10 its activity increased, and the catalase activity decrease coincided with a decrease in hematocrit. To investigate whether hypoxia drives neocytolysis under our conditions, we tested 2 known HIF target genes, Bnip3L (also called Nix), a pro-apoptotic protein that causes mitochondrial autophagy. Bnip3L mRNA was induced 9x during hypoxia and reduced 2x at PH day 6, compared to before hypoxia. We also analyzed Foxo3a, a transcription factor, in sorted reticulocytes (CD71+/TER119+/Mitochondria+) which regulates cellular stress responses such as catalase and superoxide dismutase (SOD). Foxo3a was slightly increased during hypoxia and reduced 4x at PH day 6 from levels before hypoxia. In conclusion, we developed mouse model to study neocytolysis. Our data suggest that increased mitochondria retained by Bnip3L repression leads to an accumulation of reactive oxygen species (whether in reticulocytes, platelets or leukocytes), and that young RBCs formed in hypoxia with insufficient antioxidant enzyme activity cannot survive because of excessive reactive oxygen species, with ensuing hemolysis. Studies of the role of other blood cells, as well as human studies of mountain climbers upon their return to sea level, are in progress. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Kwang-Woo Jung ◽  
Dong-Hoon Yang ◽  
Shinae Maeng ◽  
Kyung-Tae Lee ◽  
Yee-Seul So ◽  
...  

Author(s):  
A.M. Yelins’ka ◽  
V.O. Kostenko

This study is aimed at investigating the effect of imatinib mesylate, an inhibitor of the transcription factor STAT-3, on the oxidative and nitrosative stress indicators in rat periodontal tissues during the experimental systemic inflammatory response (SIR) induced by the introduction of the Salmonella typhi lipopolysaccharide (LPS) (in a dose of 0.4 μg/kg body wt, 3 times for the 1 week and once a week through the next 7 weeks). Imatinib mesylate introduction in a dose of 15 mg/kg 3 times a week, starting from the 30th day of the SIR modeling, was accompanied by a significant decrease in the rate of production of superoxide anion radical by the mitochondrial respiratory chain (by 13.4%) compared with the data from the SIR modeled group. The production rate of this radical by NADPH-dependent electron transport chains and phagocytes did not change significantly. At the same time, in the periodontal tissues, the total activity of NO synthase decreased (by 27.4%) without significant changes in the concentration of peroxynitrite ions. As a result, lipid peroxidation (LPO) in periodontal soft tissues was limited: the concentration of secondary peroxidation products before and after the incubation in a prooxidant buffer solution when imatinib mesylate was added was inferior to the results of the SIR modeled group by 37.5 and 33.8%, respectively. The activity of superoxide dismutase and catalase exceeded the data of the comparison group by 40.0 and 60.0%, respectively. It was concluded that the use of the inhibitor of STAT-3 activation, imatinib mesylate, under LPS-induced SIR, limits the formation of reactive oxygen and nitrogen species in rat periodontal tissues: it decreases the production rate of superoxide anion-radical by the mitochondrial electron transport chain, reduces the total activity of NO synthase. This results in the reduced formation of secondary LPO products in periodontal tissues and the reduced activity of antioxidant enzymes in them (superoxide dismutase, catalase).


Sign in / Sign up

Export Citation Format

Share Document