Faculty Opinions recommendation of Checkpoint-mediated DNA polymerase ε exonuclease activity curbing counteracts resection-driven fork collapse.

Author(s):  
Uttam Surana ◽  
Cheng-Gee Koh
1997 ◽  
Vol 41 (3) ◽  
pp. 594-599 ◽  
Author(s):  
X Xiong ◽  
J L Smith ◽  
M S Chen

Cidofovir (CDV) (HPMPC) has potent in vitro and in vivo activity against human cytomegalovirus (HCMV), CDV diphosphate (CDVpp), the putative antiviral metabolite of CDV, is an inhibitor and an alternate substrate of HCMV DNA polymerase. CDV is incorporated with the correct complementation to dGMP in the template, and the incorporated CDV at the primer end is not excised by the 3'-to-5' exonuclease activity of HCMV DNA polymerase. The incorporation of a CDV molecule causes a decrease in the rate of DNA elongation for the addition of the second natural nucleotide from the singly incorporated CDV molecule. The reduction in the rate of DNA (36-mer) synthesis from an 18-mer by one incorporated CDV is 31% that of the control. However, the fidelity of HCMV DNA polymerase is maintained for the addition of the nucleotides following a single incorporated CDV molecule. The rate of DNA synthesis by HCMV DNA polymerase is drastically decreased after the incorporation of two consecutive CDV molecules; the incorporation of a third consecutive CDV molecule is not detectable. Incorporation of two CDV molecules separated by either one or two deoxynucleoside monophosphates (dAMP, dGMP, or dTMP) also drastically decreases the rate of DNA chain elongation by HCMV DNA polymerase. The rate of DNA synthesis decreases by 90% when a template which contains one internally incorporated CDV molecule is used. The inhibition by CDVpp of DNA synthesis by HCMV DNA polymerase and the inability of HCMV DNA polymerase to excise incorporated CDV from DNA may account for the potent and long-lasting anti-CMV activity of CDV.


1994 ◽  
Vol 302 (2) ◽  
pp. 567-571 ◽  
Author(s):  
P Hentosh ◽  
P Grippo

2-Chloro-2′-deoxyadenosine triphosphate, a purine nucleotide analogue and potent antileukaemic agent, was incorporated into double-stranded 36-mers in place of dATP to investigate the effects of 2-chloroadenine (ClAde) on DNA polymerase-associated 3′-->5′ exonuclease activity. ClAde residues within one strand of duplex DNA did not inhibit exonuclease activity; on the contrary, ClAde-containing minus strands were digested to a greater extent than was control DNA in the absence of deoxyribonucleoside triphosphates by Escherichia coli Klenow fragment, yeast DNA polymerase II and T4 DNA polymerase. After a 30 min incubation with 5 units of Klenow fragment, approximately 65% of control DNA remained in DNA fragments of 26 bases or larger compared with only approximately 25% of ClAde-substituted substrates. Unsubstituted plus strands opposite a ClAde-containing strand were likewise digested more quickly by 3′-->5′ exonuclease, but only in the vicinity of the ClAde sites. Approx. 63% of the plus strands from ClAde-containing oligomers were less than 24 bases in length after a 25 min digestion period with Klenow fragment compared with only approximately 32% of control DNA. Such results indicate that, unlike other base modifications such as pyrimidine dimers, methoxy psoralen adducts and certain nucleoside analogues, all of which inhibit or decrease the rate of strand degradation by 3′-->5′ exonucleases, incorporated ClAde enhances strand degradation of duplex DNA.


2004 ◽  
Vol 381 (3) ◽  
pp. 709-717 ◽  
Author(s):  
Harry P. RAPPAPORT

With the goal of constructing a genetic alphabet consisting of a set of three base pairs, the fidelity of replication of the three base pairs TH (5-methyl-2-pyrimidinone)/HS (6-thiopurine; thiohypoxanthine), C/H (hypoxanthine) and T/A was evaluated using T7 DNA polymerase, a polymerase with a strong 3′→5′ exonuclease activity. An evaluation of the suitability of a new base pair for replication should include both the contribution of the fidelity of a polymerase activity and the contribution of proofreading by a 3′→5′ exonuclease activity. Using a steady-state kinetics method that included the contribution of the 3′→5′ exonuclease activity, the fidelity of replication was determined. The method determined the ratio of the apparent rate constant for the addition of a deoxynucleotide to the primer across from a template base by the polymerase activity and the rate constant for removal of the added deoxynucleotide from the primer by the 3′→5′ exonuclease activity. This ratio was designated the eni (efficiency of net incorporation). The eni of the base pair C/H was equal to or greater than the eni of T/A. The eni of the base pair TH/HS was 0.1 times that of A/T for TH in the template and 0.01 times that of A/T for HS in the template. The ratio of the eni of a mismatched deoxynucleotide to the eni of a matched deoxynucleotide was a measure of the error frequency. The error frequencies were as follows: thymine or TH opposite a template hypoxanthine, 2×10−6; HS opposite a template cytosine, <3×10−4. The remaining 24 mismatched combinations of bases gave no detectable net incorporation. Two mismatches, hypoxanthine opposite a template thymine or a template TH, showed trace incorporation in the presence of a standard dNTP complementary to the next template base. T7 DNA polymerase extended the primer beyond each of the matched base pairs of the set. The level of fidelity of replication of the three base pairs with T7 DNA polymerase suggests that they are adequate for a three-base-pair alphabet for DNA replication.


2009 ◽  
Vol 37 (9) ◽  
pp. 2854-2866 ◽  
Author(s):  
Ruzaliya Fazlieva ◽  
Cynthia S. Spittle ◽  
Darlene Morrissey ◽  
Harutoshi Hayashi ◽  
Hong Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document