scholarly journals Faculty Opinions recommendation of Photosynthesis-independent production of reactive oxygen species in the rice bundle sheath during high light is mediated by NADPH oxidase.

Author(s):  
Xinguang Zhu
2021 ◽  
Vol 118 (25) ◽  
pp. e2022702118
Author(s):  
Haiyan Xiong ◽  
Lei Hua ◽  
Ivan Reyna-Llorens ◽  
Yi Shi ◽  
Kun-Ming Chen ◽  
...  

When exposed to high light, plants produce reactive oxygen species (ROS). In Arabidopsis thaliana, local stress such as excess heat or light initiates a systemic ROS wave in phloem and xylem cells dependent on NADPH oxidase/respiratory burst oxidase homolog (RBOH) proteins. In the case of excess light, although the initial local accumulation of ROS preferentially takes place in bundle-sheath strands, little is known about how this response takes place. Using rice and the ROS probes diaminobenzidine and 2′,7′-dichlorodihydrofluorescein diacetate, we found that, after exposure to high light, ROS were produced more rapidly in bundle-sheath strands than mesophyll cells. This response was not affected either by CO2 supply or photorespiration. Consistent with these findings, deep sequencing of messenger RNA (mRNA) isolated from mesophyll or bundle-sheath strands indicated balanced accumulation of transcripts encoding all major components of the photosynthetic apparatus. However, transcripts encoding several isoforms of the superoxide/H2O2-producing enzyme NADPH oxidase were more abundant in bundle-sheath strands than mesophyll cells. ROS production in bundle-sheath strands was decreased in mutant alleles of the bundle-sheath strand preferential isoform of OsRBOHA and increased when it was overexpressed. Despite the plethora of pathways able to generate ROS in response to excess light, NADPH oxidase–mediated accumulation of ROS in the rice bundle-sheath strand was detected in etiolated leaves lacking chlorophyll. We conclude that photosynthesis is not necessary for the local ROS response to high light but is in part mediated by NADPH oxidase activity.


2020 ◽  
Author(s):  
Haiyan Xiong ◽  
Lei Hua ◽  
Ivan Reyna-Llorens ◽  
Yi Shi ◽  
Kun-Ming Chen ◽  
...  

AbstractWhen exposed to high light plants produce reactive oxygen species (ROS). In Arabidopsis thaliana local accumulation of ROS preferentially takes place in bundle sheath strands, but little is known about how this response takes place. Using rice and the ROS probes diaminobenzidine and 2’,7’-dichlorodihydrofluorescein diacetate, we found that after exposure to high light, ROS were produced more rapidly in bundle sheath strands than mesophyll cells. This response was not affected either by CO2 supply or photorespiration. Consistent with these findings, deep sequencing of mRNA isolated from mesophyll or bundle sheath strands indicated balanced accumulation of transcripts encoding all major components of the photosynthetic apparatus. However, transcripts encoding several isoforms of the superoxide/H2O2-producing enzyme NADPH oxidase were more abundant in bundle sheath strands than mesophyll cells. ROS production in bundle sheath strands was reduced by blocking NADPH oxidase activity pharmacologically, but increased when the bundle sheath preferential RBOHA isoform of NADPH oxidase was over-expressed. NADPH oxidase mediated accumulation of ROS in the rice bundle sheath was detected in etiolated leaves lacking chlorophyll indicating that high light and NADPH oxidase-dependent ROS production is not dependent on photosynthesis.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Shan Chen ◽  
Xian-Fang Meng ◽  
Chun Zhang

Proteinuria is an independent risk factor for end-stage renal disease (ESRD) (Shankland, 2006). Recent studies highlighted the mechanisms of podocyte injury and implications for potential treatment strategies in proteinuric kidney diseases (Zhang et al., 2012). Reactive oxygen species (ROS) are cellular signals which are closely associated with the development and progression of glomerular sclerosis. NADPH oxidase is a district enzymatic source of cellular ROS production and prominently expressed in podocytes (Zhang et al., 2010). In the last decade, it has become evident that NADPH oxidase-derived ROS overproduction is a key trigger of podocyte injury, such as renin-angiotensin-aldosterone system activation (Whaley-Connell et al., 2006), epithelial-to-mesenchymal transition (Zhang et al., 2011), and inflammatory priming (Abais et al., 2013). This review focuses on the mechanism of NADPH oxidase-mediated ROS in podocyte injury under different pathophysiological conditions. In addition, we also reviewed the therapeutic perspectives of NADPH oxidase in kidney diseases related to podocyte injury.


Planta ◽  
2014 ◽  
Vol 240 (5) ◽  
pp. 1023-1035 ◽  
Author(s):  
Jiangli Zhang ◽  
Changsheng Chen ◽  
Di Zhang ◽  
Houhua Li ◽  
Pengmin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document