Faculty Opinions recommendation of The microbiota coordinates diurnal rhythms in innate immunity with the circadian clock.

Author(s):  
Jens-Michael Schröder
Cell ◽  
2021 ◽  
Author(s):  
John F. Brooks ◽  
Cassie L. Behrendt ◽  
Kelly A. Ruhn ◽  
Syann Lee ◽  
Prithvi Raj ◽  
...  

mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Jie Yin ◽  
Yuying Li ◽  
Hui Han ◽  
Jie Ma ◽  
Gang Liu ◽  
...  

ABSTRACT Melatonin, a circadian hormone, has been reported to improve host lipid metabolism by reprogramming the gut microbiota, which also exhibits rhythmicity in a light/dark cycle. However, the effect of the administration of exogenous melatonin on the diurnal variation in the gut microbiota in mice fed a high-fat diet (HFD) is unclear. Here, we further confirmed the antiobesogenic effect of melatonin on mice fed an HFD for 2 weeks. Samples were collected every 4 h within a 24-h period, and diurnal rhythms of clock gene expression (Clock, Cry1, Cry2, Per1, and Per2) and serum lipid indexes varied with diurnal time. Notably, Clock and triglycerides (TG) showed a marked rhythm in the control in melatonin-treated mice but not in the HFD-fed mice. The rhythmicity of these parameters was similar between the control and melatonin-treated HFD-fed mice compared with that in the HFD group, indicating an improvement caused by melatonin in the diurnal clock of host metabolism in HFD-fed mice. Moreover, 16S rRNA gene sequencing showed that most microbes exhibited daily rhythmicity, and the trends were different for different groups and at different time points. We also identified several specific microbes that correlated with the circadian clock genes and serum lipid indexes, which might indicate the potential mechanism of action of melatonin in HFD-fed mice. In addition, effects of melatonin exposure during daytime or nighttime were compared, but a nonsignificant difference was noticed in response to HFD-induced lipid dysmetabolism. Interestingly, the responses of microbiota-transplanted mice to HFD feeding also varied at different transplantation times (8:00 and 16:00) and with different microbiota donors. In summary, the daily oscillations in the expression of circadian clock genes, serum lipid indexes, and the gut microbiota appeared to be driven by short-term feeding of an HFD, while administration of exogenous melatonin improved the composition and diurnal rhythmicity of some specific gut microbiota in HFD-fed mice. IMPORTANCE The gut microbiota is strongly shaped by a high-fat diet, and obese humans and animals are characterized by low gut microbial diversity and impaired gut microbiota compositions. Comprehensive data on mammalian gut metagenomes shows gut microbiota exhibit circadian rhythms, which is disturbed by a high-fat diet. On the other hand, melatonin is a natural and ubiquitous molecule showing multiple mechanisms of regulating the circadian clock and lipid metabolism, while the role of melatonin in the regulation of the diurnal patterns of gut microbial structure and function in obese animals is not yet known. This study delineates an intricate picture of melatonin-gut microbiota circadian rhythms and may provide insight for obesity intervention.


2009 ◽  
Vol 107 (4) ◽  
pp. 1339-1347 ◽  
Author(s):  
Martin E. Young

Diurnal rhythms in myocardial physiology (e.g., metabolism, contractile function) and pathophyiology (e.g., sudden cardiac death) are well establish and have classically been ascribed to time-of-day-dependent alterations in the neurohumoral milieu. Existence of an intramyocellular circadian clock has recently been exposed. Circadian clocks enable the cell to anticipate environmental stimuli, facilitating a timely and appropriate response. Generation of genetically modified mice with a targeted disruption of the cardiomyocyte circadian clock has provided an initial means for deciphering the functions of this transcriptionally based mechanism and allowed predictions regarding which environmental stimuli the heart anticipates (i.e., “anticipating anticipation”). Recent studies show that the cardiomyocyte circadian clock influences myocardial gene expression, β-adrenergic signaling, transcriptional responsiveness to fatty acids, triglyceride metabolism, heart rate, and cardiac output, as well as ischemia-reperfusion tolerance. In addition to reviewing current knowledge regarding the roles of the cardiomyocyte circadian clock, this article highlights putative frontiers in this field. The latter includes establishing molecular links between the cardiomyocyte circadian clock with identified functions, understanding the pathophysiological consequences of disruption of this mechanism, targeting resynchronization of the cardiomyocyte circadian clock for prevention/treatment of cardiovascular disease, linking the circadian clock with the cardiobeneficial effects of caloric restriction, and determining whether circadian clock genes are subject to epigenetic regulation. Information gained from studies investigating the cardiomyocyte circadian clock will likely translate to extracardiac tissues, such as skeletal muscle, liver, and adipose tissue.


2018 ◽  
Vol 314 (3) ◽  
pp. G431-G447 ◽  
Author(s):  
Uduak S. Udoh ◽  
Jennifer A. Valcin ◽  
Telisha M. Swain ◽  
Ashley N. Filiano ◽  
Karen L. Gamble ◽  
...  

Multiple metabolic pathways exhibit time-of-day-dependent rhythms that are controlled by the molecular circadian clock. We have shown that chronic alcohol is capable of altering the molecular clock and diurnal oscillations in several elements of hepatic glycogen metabolism ( 19 , 44 ). Herein, we sought to determine whether genetic disruption of the hepatocyte clock differentially impacts hepatic glycogen content in chronic alcohol-fed mice. Male hepatocyte-specific BMAL1 knockout (HBK) and littermate controls were fed control or alcohol-containing diets for 5 wk to alter hepatic glycogen content. Glycogen displayed a significant diurnal rhythm in livers of control genotype mice fed the control diet. While rhythmic, alcohol significantly altered the diurnal oscillation of glycogen in livers of control genotype mice. The glycogen rhythm was mildly altered in livers of control-fed HBK mice. Importantly, glycogen content was arrhythmic in livers of alcohol-fed HBK mice. Consistent with these changes in hepatic glycogen content, we observed that some glycogen and glucose metabolism genes were differentially altered by chronic alcohol consumption in livers of HBK and littermate control mice. Diurnal rhythms in glycogen synthase (mRNA and protein) were significantly altered by alcohol feeding and clock disruption. Alcohol consumption significantly altered Gck, Glut2, and Ppp1r3g rhythms in livers of control genotype mice, with diurnal rhythms of Pklr, Glut2, Ppp1r3c, and Ppp1r3g further disrupted (dampened or arrhythmic) in livers of HBK mice. Taken together, these findings show that chronic alcohol consumption and hepatocyte clock disruption differentially influence the diurnal rhythm of glycogen and various key glycogen metabolism-related genes in the liver. NEW & NOTEWORTHY We report that circadian clock disruption exacerbates alcohol-mediated alterations in hepatic glycogen. We observed differential responsiveness in diurnal rhythms of glycogen and glycogen metabolism genes and proteins in livers of hepatocyte-specific BMAL1 knockout and littermate control mice fed alcohol. Our findings provide new insights into potential mechanisms by which alcohol alters glycogen, an important energy source for liver and other organs.


2019 ◽  
Author(s):  
Jie Yin ◽  
Yuying Li ◽  
Hui Han ◽  
Gang Liu ◽  
Xin Wu ◽  
...  

AbstractMelatonin, a circadian hormone, has been reported to improve host lipid metabolism by reprogramming gut microbiota, which also exhibits rhythmicity in a light/dark cycle. However, the effect of admistartion of exogenous melatonin on the diurnal variation in gut microbiota in high fat diet (HFD)-fed mice is obscure. Here, we further confirmed the anti-obesogenic effect of melatonin on in mice feed with HFD for two weeks. Samples were collected every 4 h within a 24-h period and diurnal rhythms of clock genes expression (Clock, Cry1, Cry2, Per1, and Per2) and serum lipid indexes varied with diurnal time. Notably, Clock and triglycerides (TG) showed a marked rhythm only in the control and melatonin treated mice, but not in the HFD-fed mice. Rhythmicity of these parameters were similar between control and melatonin treated HFD mice compared with the HFD group, indicating an improvement of melatonin in the diurnal clock of host metabolism in HFD-fed mice. 16S rDNA sequencing showed that most microbiota exhibited a daily rhythmicity and the trends differentiated at different groups and different time points. We also identified several specific microbiota correlating with the circadian clock genes and serum lipid indexes, which might contribute the potential mechanism of melatonin in HFD-fed mice. Interestingly, administration of exogenous melatonin only at daytime exhibited higher resistance to HFD-induced lipid dysmetabolism than nighttime treatment companying with altered gut microbiota (Lactobacillus, Intestinimonas, and Oscillibacter). Importantly, the responses of microbiota transplanted mice to HFD feeding also varied at different transplanting times (8:00 and 16:00) and different microbiota donors. In summary, daily oscillations in the expression of circadian clock genes, serum lipid indexes, and gut microbiota, appears to be driven by a short-time feeding of an HFD. Administration of exogenous melatonin improved the compositions and diurnal rhythmicity of gut microbiota, which might be linked to host diurnal rhythm and metabolism.ImportancePrevious studies show that a circadian hormone, melatonin, involves in host lipid metabolism by reprogramming gut microbiota, which also exhibits rhythmicity in a light/dark cycle. However, the effect of melatonin drinking on the diurnal variation in gut microbiota in high fat diet-fed mice is obscure. Here, we found that 24-h oscillations were widely occurred in circadian clock genes, serum lipid indexes, and gut microbiota. Melatonin drinking improved the compositions and circadian rhythmicity of gut microbiota, which might be linked to host circadian rhythm and metabolism.


2012 ◽  
Vol 59 (6) ◽  
pp. 447-456 ◽  
Author(s):  
Akira Kohsaka ◽  
Hidefumi Waki ◽  
He Cui ◽  
Sabine S. Gouraud ◽  
Masanobu Maeda

2020 ◽  
Author(s):  
Tao Lu ◽  
Zhenyan Zhang ◽  
Yan Li ◽  
Qi Zhang ◽  
Liwei Sun ◽  
...  

Abstract Background: Many physiological and metabolic processes in plants are modulated by a circadian clock. Rhizospheric microorganisms fed by root exudates provide beneficial functions to their plant host. The intricate connection between the circadian clock and the rhizospheric microbial community remains poorly understood. Results: We investigated the role of the Arabidopsis circadian clock in shaping the rhizospheric microbial community using wild-type plants and clock mutants (cca1-1 and toc1-101). We performed transcriptomic and metabolomic analyses and sequenced amplicons of the 16S ribosomal RNA gene to characterize gene transcription, root exudation and the bacterial communities, respectively, throughout the day (24 h). Deficiencies of the central circadian clock led to abnormal diurnal rhythms for thousands of expressed genes and dozens of root exudates. Bacterial community failed to follow obvious patterns in the 24-h period, and lack of coordination with plant growth in the clock mutants. Conclusions: Our findings suggested that the biological clock was an important force that drove plants to adjust their rhizospheric microbiomes for adapting to different growth stages.


Sign in / Sign up

Export Citation Format

Share Document