Faculty Opinions recommendation of Quantitative imaging of RNA polymerase II activity in plants reveals the single-cell basis of tissue-wide transcriptional dynamics.

Author(s):  
Ying-Bo Mao
Author(s):  
Simon Alamos ◽  
Armando Reimer ◽  
Krishna K. Niyogi ◽  
Hernan G. Garcia

AbstractThe responses of plants to their environment often hinge on the spatiotemporal dynamics of transcriptional regulation. While live-imaging tools have been used extensively to quantitatively capture rapid transcriptional dynamics in living animal cells, lack of implementation of these technologies in plants has limited concomitant quantitative studies. Here, we applied the PP7 and MS2 RNA-labeling technologies for the quantitative imaging of RNA polymerase II activity dynamics in single cells of living plants as they respond to experimental treatments. Using this technology, we count nascent RNA transcripts in real-time in Nicotiana benthamiana (tobacco) and Arabidopsis thaliana (Arabidopsis). Examination of heat shock reporters revealed that plant tissues respond to external signals by modulating the number of cells engaged in transcription rather than the transcription rate of active cells. This switch-like behavior, combined with cell-to-cell variability in transcription rate, results in mRNA production variability spanning three orders of magnitude. We determined that cellular heterogeneity stems mainly from the stochasticity intrinsic to individual alleles. Taken together, our results demonstrate that it is now possible to quantitatively study the dynamics of transcriptional programs in single cells of living plants.


2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Daniel A. Bartlett ◽  
Vishnu Dileep ◽  
Tetsuya Handa ◽  
Yasuyuki Ohkawa ◽  
Hiroshi Kimura ◽  
...  

Chromatin profiling in single cells has been extremely challenging and almost exclusively limited to histone proteins. In cases where single-cell methods have shown promise, many require highly specialized equipment or cell type–specific protocols and are relatively low throughput. Here, we combine the advantages of tagmentation, linear amplification, and combinatorial indexing to produce a high-throughput single-cell DNA binding site mapping method that is simple, inexpensive, and capable of multiplexing several independent samples per experiment. Targeted insertion of promoters sequencing (TIP-seq) uses Tn5 fused to proteinA to insert a T7 RNA polymerase promoter adjacent to a chromatin protein of interest. Linear amplification of flanking DNA with T7 polymerase before sequencing library preparation provides ∼10-fold higher unique reads per single cell compared with other methods. We applied TIP-seq to map histone modifications, RNA polymerase II (RNAPII), and transcription factor CTCF binding sites in single human and mouse cells.


2017 ◽  
Vol 27 (10) ◽  
pp. 1658-1664 ◽  
Author(s):  
Stefano de Pretis ◽  
Theresia R. Kress ◽  
Marco J. Morelli ◽  
Arianna Sabò ◽  
Chiara Locarno ◽  
...  

2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


Sign in / Sign up

Export Citation Format

Share Document