scholarly journals Faculty Opinions recommendation of A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks.

Author(s):  
Guillaume Romet-Lemonne
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Johanna Funk ◽  
Felipe Merino ◽  
Matthias Schaks ◽  
Klemens Rottner ◽  
Stefan Raunser ◽  
...  

AbstractHeterodimeric capping protein (CP/CapZ) is an essential factor for the assembly of branched actin networks, which push against cellular membranes to drive a large variety of cellular processes. Aside from terminating filament growth, CP potentiates the nucleation of actin filaments by the Arp2/3 complex in branched actin networks through an unclear mechanism. Here, we combine structural biology with in vitro reconstitution to demonstrate that CP not only terminates filament elongation, but indirectly stimulates the activity of Arp2/3 activating nucleation promoting factors (NPFs) by preventing their association to filament barbed ends. Key to this function is one of CP’s C-terminal “tentacle” extensions, which sterically masks the main interaction site of the terminal actin protomer. Deletion of the β tentacle only modestly impairs capping. However, in the context of a growing branched actin network, its removal potently inhibits nucleation promoting factors by tethering them to capped filament ends. End tethering of NPFs prevents their loading with actin monomers required for activation of the Arp2/3 complex and thus strongly inhibits branched network assembly both in cells and reconstituted motility assays. Our results mechanistically explain how CP couples two opposed processes—capping and nucleation—in branched actin network assembly.


2019 ◽  
Author(s):  
Markku Hakala ◽  
Hugo Wioland ◽  
Mari Tolonen ◽  
Antoine Jegou ◽  
Guillaume Romet-Lemonne ◽  
...  

AbstractCoordinated polymerization of actin filaments provides force for cell migration, morphogenesis, and endocytosis. Capping Protein (CP) is central regulator of actin dynamics in all eukaryotes. It binds actin filament (F-actin) barbed ends with high affinity and slow dissociation kinetics to prevent filament polymerization and depolymerization. In cells, however, CP displays remarkably rapid dynamics within F-actin networks, but the underlying mechanism has remained enigmatic. We report that a conserved cytoskeletal regulator, twinfilin, is responsible for CP’s rapid dynamics and specific localization in cells. Depletion of twinfilin led to stable association of CP with cellular F-actin arrays and its treadmilling throughout leading-edge lamellipodium. These were accompanied by diminished F-actin disassembly rates. In vitro single filament imaging approaches revealed that twinfilin directly promotes dissociation of CP from filament barbed ends, while allowing subsequent filament depolymerization. These results uncover an evolutionary conserved bipartite mechanism that controls how actin cytoskeleton-mediated forces are generated in cells.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd5956 ◽  
Author(s):  
Artem I. Fokin ◽  
Violaine David ◽  
Ksenia Oguievetskaia ◽  
Emmanuel Derivery ◽  
Caroline E. Stone ◽  
...  

Dendritic actin networks develop from a first actin filament through branching by the Arp2/3 complex. At the surface of endosomes, the WASH complex activates the Arp2/3 complex and interacts with the capping protein for unclear reasons. Here, we show that the WASH complex interacts with dynactin and uncaps it through its FAM21 subunit. In vitro, the uncapped Arp1/11 minifilament elongates an actin filament, which then primes the WASH-induced Arp2/3 branching reaction. In dynactin-depleted cells or in cells where the WASH complex is reconstituted with a FAM21 mutant that cannot uncap dynactin, formation of branched actin at the endosomal surface is impaired. Our results reveal the importance of the WASH complex in coordinating two complexes containing actin-related proteins.


Author(s):  
Artem I. Fokin ◽  
Alexis M. Gautreau

The Arp2/3 complex generates branched actin networks at different locations of the cell. The WASH and WAVE Nucleation Promoting Factors (NPFs) activate the Arp2/3 complex at the surface of endosomes or at the cell cortex, respectively. In this review, we will discuss how these two NPFs are controlled within distinct, yet related, multiprotein complexes. These complexes are not spontaneously assembled around WASH and WAVE, but require cellular assembly factors. The centrosome, which nucleates microtubules and branched actin, appears to be a privileged site for WASH complex assembly. The actin and microtubule cytoskeletons are both responsible for endosome shape and membrane remodeling. Motors, such as dynein, pull endosomes and extend membrane tubules along microtubule tracks, whereas branched actin pushes onto the endosomal membrane. It was recently uncovered that WASH assembles a super complex with dynactin, the major dynein activator, where the Capping Protein (CP) is exchanged from dynactin to the WASH complex. This CP swap initiates the first actin filament that primes the autocatalytic nucleation of branched actin at the surface of endosomes. Possible coordination between pushing and pulling forces in the remodeling of endosomal membranes is discussed.


2016 ◽  
Vol 113 (43) ◽  
pp. E6610-E6619 ◽  
Author(s):  
Goeh Jung ◽  
Christopher J. Alexander ◽  
Xufeng S. Wu ◽  
Grzegorz Piszczek ◽  
Bi-Chang Chen ◽  
...  

Capping Protein (CP) plays a central role in the creation of the Arp2/3-generated branched actin networks comprising lamellipodia and pseudopodia by virtue of its ability to cap the actin filament barbed end, which promotes Arp2/3-dependent filament nucleation and optimal branching. The highly conserved protein V-1/Myotrophin binds CP tightly in vitro to render it incapable of binding the barbed end. Here we addressed the physiological significance of this CP antagonist in Dictyostelium, which expresses a V-1 homolog that we show is very similar biochemically to mouse V-1. Consistent with previous studies of CP knockdown, overexpression of V-1 in Dictyostelium reduced the size of pseudopodia and the cortical content of Arp2/3 and induced the formation of filopodia. Importantly, these effects scaled positively with the degree of V-1 overexpression and were not seen with a V-1 mutant that cannot bind CP. V-1 is present in molar excess over CP, suggesting that it suppresses CP activity in the cytoplasm at steady state. Consistently, cells devoid of V-1, like cells overexpressing CP described previously, exhibited a significant decrease in cellular F-actin content. Moreover, V-1–null cells exhibited pronounced defects in macropinocytosis and chemotactic aggregation that were rescued by V-1, but not by the V-1 mutant. Together, these observations demonstrate that V-1 exerts significant influence in vivo on major actin-based processes via its ability to sequester CP. Finally, we present evidence that V-1’s ability to sequester CP is regulated by phosphorylation, suggesting that cells may manipulate the level of active CP to tune their “actin phenotype.”


2017 ◽  
Author(s):  
Shashank Shekhar ◽  
Marie-France Carlier

AbstractA living cell’s ability to assemble actin filaments in intracellular motile processes is directly dependent on the availability of polymerizable actin monomers which feed polarized filament growth. Continued generation of the monomer pool by filament disassembly is therefore crucial. Disassemblers like ADF/cofilin and filament cappers like Capping Protein (CP) are essential agonists of motility, but the exact molecular mechanisms by which they accelerate actin polymerization at the leading edge and filament turnover has been debated for over two decades. While filament fragmentation by ADF/cofilin has long been demonstrated by TIRF, filament depolymerization was only inferred from bulk solution assays. Using microfluidics-assisted TIRF microscopy, we provide the first direct visual evidence of ADF's simultaneous severing and rapid depolymerization of individual filaments. We have also built a conceptually novel assay to directly visualize ADF’s effect on a filament population. We demonstrate that ADF’s enhanced pointed-end depolymerization leads to an increase in polymerizable actin monomers co-existing with filaments, thus promoting faster barbed-end growth. We further reveal how ADF-enhanced filament depolymerization synergizes with CP’s long-predicted “monomer funneling” and leads to skyrocketing of filament growth rates, close to estimated rates in the lamellipodia. The “Funneling model” hypothesized, on thermodynamic grounds, that at high enough extent of capping, the few noncapped filaments transiently grow much faster, an effect proposed to be very important for motility. We provide the first direct microscopic evidence of monomer funneling by CP at the scale of individual filaments. We believe that these results enlighten our understanding of the turnover of cellular actin networks.


2021 ◽  
Author(s):  
Johanna Funk ◽  
Felipe Merino ◽  
Matthias Schaks ◽  
Klemens Rottner ◽  
Stefan Raunser ◽  
...  

Heterodimeric capping protein (CP/CapZ) is an essential factor for the assembly of branched actin networks, which push against cellular membranes to drive a large variety of cellular processes. Aside from terminating filament growth, CP stimulates the nucleation of actin filaments by the Arp2/3 complex in branched actin networks through an unclear mechanism. Here, we report the structure of capped actin filament barbed ends, which reveals how CP not only prevents filament elongation, but also controls access to both terminal filament subunits. In addition to its primary binding site that blocks the penultimate subunit, we find that the CP sterically occludes the central interaction site of the terminal actin protomer through one of its C-terminal tentacle extensions. Deletion of this β tentacle only modestly impairs capping. However in the context of a growing branched actin network, its removal potently inhibits nucleation promoting factors (NPFs) by tethering them to capped filament ends. End tethering of NPFs prevents their loading with actin monomers required for activation of the Arp2/3 complex and thus strongly inhibits branched network assembly both in cells and reconstituted motility assays. Our results mechanistically explain how CP couples two opposed processes -capping and nucleation- in branched actin network assembly.


2020 ◽  
Author(s):  
Artem I. Fokin ◽  
Violaine David ◽  
Ksenia Oguievetskaia ◽  
Emmanuel Derivery ◽  
Caroline E. Stone ◽  
...  

AbstractDendritic actin networks develop from a first actin filament through branching by the Arp2/3 complex. At the surface of endosomes, the WASH complex activates the Arp2/3 complex and interacts with the Capping Protein for unclear reasons. Here we show that that the WASH complex interacts with Dynactin and uncaps it through its FAM21 subunit. In vitro, the uncapped Arp1/11 minifilament elongates an actin filament, which then primes the WASH-induced Arp2/3 branching reaction. In Dynactin-depleted cells or in cells where the WASH complex is reconstituted with a FAM21 mutant that cannot uncap Dynactin, formation of branched actin at the endosomal surface is impaired. Our results reveal the importance of the WASH complex in coordinating two complexes containing actin-related proteins.One Sentence SummaryDendritic actin networks grow in an autocatalytic manner starting from the uncapped minifilament of Dynactin.


Sign in / Sign up

Export Citation Format

Share Document