Faculty Opinions recommendation of TIR domains of plant immune receptors are 2′,3′-cAMP/cGMP synthetases mediating cell death.

Author(s):  
Shahid Mukhtar ◽  
Karolina Mukhtar
Science ◽  
2019 ◽  
Vol 365 (6455) ◽  
pp. 799-803 ◽  
Author(s):  
Li Wan ◽  
Kow Essuman ◽  
Ryan G. Anderson ◽  
Yo Sasaki ◽  
Freddy Monteiro ◽  
...  

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors activate cell death and confer disease resistance by unknown mechanisms. We demonstrate that plant Toll/interleukin-1 receptor (TIR) domains of NLRs are enzymes capable of degrading nicotinamide adenine dinucleotide in its oxidized form (NAD+). Both cell death induction and NAD+ cleavage activity of plant TIR domains require known self-association interfaces and a putative catalytic glutamic acid that is conserved in both bacterial TIR NAD+-cleaving enzymes (NADases) and the mammalian SARM1 (sterile alpha and TIR motif containing 1) NADase. We identify a variant of cyclic adenosine diphosphate ribose as a biomarker of TIR enzymatic activity. TIR enzymatic activity is induced by pathogen recognition and functions upstream of the genes enhanced disease susceptibility 1 (EDS1) and N requirement gene 1 (NRG1), which encode regulators required for TIR immune function. Thus, plant TIR-NLR receptors require NADase function to transduce recognition of pathogens into a cell death response.


2021 ◽  
Author(s):  
Dongli Yu ◽  
Wen Song ◽  
Eddie Yong Jun Tan ◽  
Li Liu ◽  
Yu Cao ◽  
...  

2′,3′-cAMP is a positional isomer of the well-established second messenger 3′,5′-cAMP, but little is known on the biology of this noncanonical cyclic nucleotide monophosphate (cNMP). Toll/interleukin-1 receptor (TIR) domains of nucleotide-binding leucine-rich repeat (NLR) immune receptors have NADase function necessary but insufficient to activate plant immune responses. Here we show that plant TIR proteins, besides being NADases, act as 2′,3′-cAMP/cGMP synthetases by hydrolyzing RNA/DNA. Structural data shows that a TIR domain adopts distinct oligomers with dual and exclusive enzymatic activity. Mutations specifically disrupting the synthetase activity abrogate TIR-mediated cell death in Nicotiana benthamiana, supporting an important role for these cNMPs in TIR signaling. Furthermore, the Arabidopsis negative regulator of TIR-NLR signaling, NUDT7 displays 2′,3′-cAMP/cGMP but not 3′,5′-cAMP/cGMP phosphodiesterase activity and suppresses cell death activity of TIRs in N. benthamiana. Our study identifies a novel family of 2′,3′-cAMP/cGMP synthetase and establishes a role for the noncanonical cNMPs in plant immune responses.


2015 ◽  
Author(s):  
Chih-Hang Wu ◽  
Khaoula Belhaj ◽  
Tolga O. Bozkurt ◽  
Sophien Kamoun

Intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NB-LRR or NLR) proteins often function in pairs, with "helper" proteins required for the activity of "sensors" that mediate pathogen recognition. The NLR helper NRC1 (NB-LRR protein required for HR-associated cell death 1) has been described as a signalling hub required for the cell death mediated by both cell surface and intracellular immune receptors in the model plant Nicotiana benthamiana. However, this work predates the availability of the N. benthamiana genome and whether NRC1 is indeed required for the reported phenotypes has not been confirmed. Here, we investigated the NRC family of solanaceous plants using a combination of genome annotation, phylogenetics, gene silencing and genetic complementation experiments. We discovered that a paralog of NRC1, we termed NRC3, is required for the hypersensitive cell death triggered by the disease resistance protein Pto but not Rx and Mi-1.2. NRC3 may also contribute to the hypersensitive cell death triggered by the receptor-like protein Cf-4. Our results highlight the importance of applying genetic complementation to validate gene function in RNA silencing experiments.


Science ◽  
2019 ◽  
Vol 365 (6455) ◽  
pp. 793-799 ◽  
Author(s):  
Shane Horsefield ◽  
Hayden Burdett ◽  
Xiaoxiao Zhang ◽  
Mohammad K. Manik ◽  
Yun Shi ◽  
...  

SARM1 (sterile alpha and TIR motif containing 1) is responsible for depletion of nicotinamide adenine dinucleotide in its oxidized form (NAD+) during Wallerian degeneration associated with neuropathies. Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogen effector proteins and trigger localized cell death to restrict pathogen infection. Both processes depend on closely related Toll/interleukin-1 receptor (TIR) domains in these proteins, which, as we show, feature self-association–dependent NAD+ cleavage activity associated with cell death signaling. We further show that SARM1 SAM (sterile alpha motif) domains form an octamer essential for axon degeneration that contributes to TIR domain enzymatic activity. The crystal structures of ribose and NADP+ (the oxidized form of nicotinamide adenine dinucleotide phosphate) complexes of SARM1 and plant NLR RUN1 TIR domains, respectively, reveal a conserved substrate binding site. NAD+ cleavage by TIR domains is therefore a conserved feature of animal and plant cell death signaling pathways.


2019 ◽  
Vol 31 (10) ◽  
pp. 2430-2455 ◽  
Author(s):  
Dmitry Lapin ◽  
Viera Kovacova ◽  
Xinhua Sun ◽  
Joram A. Dongus ◽  
Deepak Bhandari ◽  
...  

2016 ◽  
Vol 113 (36) ◽  
pp. 10204-10209 ◽  
Author(s):  
Stella Cesari ◽  
John Moore ◽  
Chunhong Chen ◽  
Daryl Webb ◽  
Sambasivam Periyannan ◽  
...  

Plants possess intracellular immune receptors designated “nucleotide-binding domain and leucine-rich repeat” (NLR) proteins that translate pathogen-specific recognition into disease-resistance signaling. The wheat immune receptors Sr33 and Sr50 belong to the class of coiled-coil (CC) NLRs. They confer resistance against a broad spectrum of field isolates of Puccinia graminis f. sp. tritici, including the Ug99 lineage, and are homologs of the barley powdery mildew-resistance protein MLA10. Here, we show that, similarly to MLA10, the Sr33 and Sr50 CC domains are sufficient to induce cell death in Nicotiana benthamiana. Autoactive CC domains and full-length Sr33 and Sr50 proteins self-associate in planta. In contrast, truncated CC domains equivalent in size to an MLA10 fragment for which a crystal structure was previously determined fail to induce cell death and do not self-associate. Mutations in the truncated region also abolish self-association and cell-death signaling. Analysis of Sr33 and Sr50 CC domains fused to YFP and either nuclear localization or nuclear export signals in N. benthamiana showed that cell-death induction occurs in the cytosol. In stable transgenic wheat plants, full-length Sr33 proteins targeted to the cytosol provided rust resistance, whereas nuclear-targeted Sr33 was not functional. These data are consistent with CC-mediated induction of both cell-death signaling and stem rust resistance in the cytosolic compartment, whereas previous research had suggested that MLA10-mediated cell-death and disease resistance signaling occur independently, in the cytosol and nucleus, respectively.


Sign in / Sign up

Export Citation Format

Share Document