scholarly journals NAD+ cleavage activity by animal and plant TIR domains in cell death pathways

Science ◽  
2019 ◽  
Vol 365 (6455) ◽  
pp. 793-799 ◽  
Author(s):  
Shane Horsefield ◽  
Hayden Burdett ◽  
Xiaoxiao Zhang ◽  
Mohammad K. Manik ◽  
Yun Shi ◽  
...  

SARM1 (sterile alpha and TIR motif containing 1) is responsible for depletion of nicotinamide adenine dinucleotide in its oxidized form (NAD+) during Wallerian degeneration associated with neuropathies. Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogen effector proteins and trigger localized cell death to restrict pathogen infection. Both processes depend on closely related Toll/interleukin-1 receptor (TIR) domains in these proteins, which, as we show, feature self-association–dependent NAD+ cleavage activity associated with cell death signaling. We further show that SARM1 SAM (sterile alpha motif) domains form an octamer essential for axon degeneration that contributes to TIR domain enzymatic activity. The crystal structures of ribose and NADP+ (the oxidized form of nicotinamide adenine dinucleotide phosphate) complexes of SARM1 and plant NLR RUN1 TIR domains, respectively, reveal a conserved substrate binding site. NAD+ cleavage by TIR domains is therefore a conserved feature of animal and plant cell death signaling pathways.

Author(s):  
Simon Bernard Saucet ◽  
Daniel Esmenjaud ◽  
Cyril Van Ghelder

Plants trigger appropriate defense responses notably through intracellular nucleotide-binding (NB) and leucine-rich repeat (LRR) containing receptor genes (NLRs) that detect secreted pathogen effector proteins. In NLR resistance genes, the toll/interleukin-1 receptor (TIR)-NB-LRRs (TNLs) are an important subfamily out of which approximately half members carry a post-LRR (PL) domain of unknown role. We first investigated the requirement of the PL domain for TNL–mediated immune response by mutating the most conserved amino acids across PL domains of Arabidopsis thaliana TNLs. We identified several amino acids in the PL domain of RPS4 required for its ability to trigger a hypersensitive response to AvrRps4 in N. tabacum transient assay. Mutating the corresponding amino acids within the PL domain of the tobacco TNL gene N also affected its function. Consequently, our results indicate that the integrity of the PL domain at conserved positions is crucial for at least two unrelated TNLs. We then tested the PL domain specificity for function by swapping PL domains between the paralogs RPS4 and RPS4B. Our results suggest that the PL domain is involved in their TNL pair specificity, ‘off state’ stability and NLR complex activation. Considering genetically paired Arabidopsis TNLs, we finally compared the PL and TIR domains of their sensor and executor sequences, respectively. While TIR and PL domains from executors present complete motifs, sensors showed a lack of conservation with degenerated motifs. We provide here a first contribution to the functional analysis of the PL domain in order to decipher its role for TNLs’ function.


2017 ◽  
Vol 114 (10) ◽  
pp. E2046-E2052 ◽  
Author(s):  
Xiaoxiao Zhang ◽  
Maud Bernoux ◽  
Adam R. Bentham ◽  
Toby E. Newman ◽  
Thomas Ve ◽  
...  

The self-association of Toll/interleukin-1 receptor/resistance protein (TIR) domains has been implicated in signaling in plant and animal immunity receptors. Structure-based studies identified different TIR-domain dimerization interfaces required for signaling of the plant nucleotide-binding oligomerization domain-like receptors (NLRs) L6 from flax and disease resistance protein RPS4 fromArabidopsis. Here we show that the crystal structure of the TIR domain from theArabidopsisNLR suppressor of npr1-1, constitutive 1 (SNC1) contains both an L6-like interface involving helices αD and αE (DE interface) and an RPS4-like interface involving helices αA and αE (AE interface). Mutations in either the AE- or DE-interface region disrupt cell-death signaling activity of SNC1, L6, and RPS4 TIR domains and full-length L6 and RPS4. Self-association of L6 and RPS4 TIR domains is affected by mutations in either region, whereas only AE-interface mutations affect SNC1 TIR-domain self-association. We further show two similar interfaces in the crystal structure of the TIR domain from theArabidopsisNLR recognition ofPeronospora parasitica1 (RPP1). These data demonstrate that both the AE and DE self-association interfaces are simultaneously required for self-association and cell-death signaling in diverse plant NLRs.


Author(s):  
M. Arif Hayat

Although it is recognized that niacin (pyridine-3-carboxylic acid), incorporated as the amide in nicotinamide adenine dinucleotide (NAD) or in nicotinamide adenine dinucleotide phosphate (NADP), is a cofactor in hydrogen transfer in numerous enzyme reactions in all organisms studied, virtually no information is available on the effect of this vitamin on a cell at the submicroscopic level. Since mitochondria act as sites for many hydrogen transfer processes, the possible response of mitochondria to niacin treatment is, therefore, of critical interest.Onion bulbs were placed on vials filled with double distilled water in the dark at 25°C. After two days the bulbs and newly developed root system were transferred to vials containing 0.1% niacin. Root tips were collected at ¼, ½, 1, 2, 4, and 8 hr. intervals after treatment. The tissues were fixed in glutaraldehyde-OsO4 as well as in 2% KMnO4 according to standard procedures. In both cases, the tissues were dehydrated in an acetone series and embedded in Reynolds' lead citrate for 3-10 minutes.


Sign in / Sign up

Export Citation Format

Share Document