Faculty Opinions recommendation of Differential dynamics and activity-dependent regulation of alpha- and beta-neurexins at developing GABAergic synapses.

Author(s):  
Nils Brose ◽  
Alexandros Poulopoulos
2019 ◽  
Vol 1707 ◽  
pp. 18-26 ◽  
Author(s):  
Won Chan Oh ◽  
Katharine R. Smith

2017 ◽  
Vol 216 (9) ◽  
pp. 2979-2989 ◽  
Author(s):  
Yasmine Cantaut-Belarif ◽  
Myriam Antri ◽  
Rocco Pizzarelli ◽  
Sabrina Colasse ◽  
Ilaria Vaccari ◽  
...  

Microglia control excitatory synapses, but their role in inhibitory neurotransmission has been less well characterized. Herein, we show that microglia control the strength of glycinergic but not GABAergic synapses via modulation of the diffusion dynamics and synaptic trapping of glycine (GlyR) but not GABAA receptors. We further demonstrate that microglia regulate the activity-dependent plasticity of glycinergic synapses by tuning the GlyR diffusion trap. This microglia–synapse cross talk requires production of prostaglandin E2 by microglia, leading to the activation of neuronal EP2 receptors and cyclic adenosine monophosphate–dependent protein kinase. Thus, we now provide a link between microglial activation and synaptic dysfunctions, which are common early features of many brain diseases.


2010 ◽  
Vol 30 (21) ◽  
pp. 7377-7391 ◽  
Author(s):  
P. Garcia-Junco-Clemente ◽  
G. Cantero ◽  
L. Gomez-Sanchez ◽  
P. Linares-Clemente ◽  
J. A. Martinez-Lopez ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Eva Kiss ◽  
Stefan Kins ◽  
Karin Gorgas ◽  
Maret Orlik ◽  
Carolin Fischer ◽  
...  

Abstract Artemisinins, a group of plant-derived sesquiterpene lactones, are efficient antimalarial agents. They also share anti-inflammatory and anti-viral activities and were considered for treatment of neurodegenerative disorders like Alzheimer’s disease (AD). Additionally, artemisinins bind to gephyrin, the multifunctional scaffold of GABAergic synapses, and modulate inhibitory neurotransmission in vitro. We previously reported an increased expression of gephyrin and GABAA receptors in early pre-symptomatic stages of an AD mouse model (APP-PS1) and in parallel enhanced CDK5-dependent phosphorylation of gephyrin at S270. Here, we studied the effects of artemisinin on gephyrin in the brain of young APP-PS1 mice. We detected an additional increase of gephyrin protein level, elevated gephyrin phosphorylation at Ser270, and an increased amount of GABAAR-γ2 subunits after artemisinin-treatment. Interestingly, the CDK5 activator p35 was also upregulated. Moreover, we demonstrate decreased density of postsynaptic gephyrin and GABAAR-γ2 immunoreactivities in cultured hippocampal neurons expressing gephyrin with alanine mutations at two CDK5 phosphorylation sites. In addition, the activity-dependent modulation of synaptic protein density was abolished in neurons expressing gephyrin lacking one or both of these phosphorylation sites. Thus, our results reveal that artemisinin modulates expression as well as phosphorylation of gephyrin at sites that might have important impact on GABAergic synapses in AD.


2007 ◽  
Vol 97 (6) ◽  
pp. 4386-4389 ◽  
Author(s):  
Ping Jun Zhu ◽  
David M. Lovinger

Learning and memory are thought to involve activity-dependent changes in synaptic efficacy such as long-term potentiation (LTP) and long-term depression (LTD). Recent studies have indicated that endocannabinoid-dependent modulation of inhibitory transmission facilitates induction of hippocampal LTP and that endocannabinoids play a key role in certain forms of LTD. Here, we show that repetitive low-frequency synaptic stimulation (LFS) produces persistent up-regulation of endocannabinoid signaling at hippocampal CA1 GABAergic synapses. This LFS also produces LTD of inhibitory synapses and facilitates LTP at excitatory, glutamatergic synapses. These endocannabinoid-mediated plastic changes could contribute to information storage within the brain.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
R. Wright ◽  
J. V. Raimondo ◽  
C. J. Akerman

It is becoming increasingly apparent that the strength of GABAergic synaptic transmission is dynamic. One parameter that can establish differences in the actions of GABAergic synapses is the ionic driving force for the chloride-permeable GABAAreceptor (GABAAR). Here we review some of the sophisticated ways in which this ionic driving force can vary within neuronal circuits. This driving force for GABAARs is subject to tight spatial control, with the distribution of Cl−transporter proteins and channels generating regional variation in the strength of GABAAR signalling across a single neuron. GABAAR dynamics can result from short-term changes in their driving force, which involve the temporary accumulation or depletion of intracellular Cl−. In addition, activity-dependent changes in the expression and function of Cl−regulating proteins can result in long-term shifts in the driving force for GABAARs. The multifaceted regulation of the ionic driving force for GABAARs has wide ranging implications for mature brain function, neural circuit development, and disease.


2002 ◽  
Vol 16 (11) ◽  
pp. 2123-2135 ◽  
Author(s):  
Marcelo Rosato-Siri ◽  
Micaela Grandolfo ◽  
Laura Ballerini

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Hyeonho Kim ◽  
Hyeji Jung ◽  
Hyunsu Jung ◽  
Seok-Kyu Kwon ◽  
Jaewon Ko ◽  
...  

AbstractADP ribosylation factors (ARFs) are a family of small GTPases composed of six members (ARF1–6) that control various cellular functions, including membrane trafficking and actin cytoskeletal rearrangement, in eukaryotic cells. Among them, ARF1 and ARF6 are the most studied in neurons, particularly at glutamatergic synapses, but their roles at GABAergic synapses have not been investigated. Here, we show that a subset of ARF6 protein is localized at GABAergic synapses in cultured hippocampal neurons. In addition, we found that knockdown (KD) of ARF6, but not ARF1, triggered a reduction in the number of GABAergic synaptic puncta in mature cultured neurons in an ARF activity-dependent manner. ARF6 KD also reduced GABAergic synaptic density in the mouse hippocampal dentate gyrus (DG) region. Furthermore, ARF6 KD in the DG increased seizure susceptibility in an induced epilepsy model. Viewed together, our results suggest that modulating ARF6 and its regulators could be a therapeutic strategy against brain pathologies involving hippocampal network dysfunction, such as epilepsy.


Sign in / Sign up

Export Citation Format

Share Document