gabaergic synapse
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 19)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhenhua Bian ◽  
Wenming Zhang ◽  
Jingyue Tang ◽  
Qianqian Fei ◽  
Minmin Hu ◽  
...  

Purpose: This study aimed to investigate the potential mechanisms and related bioactive components of ZSS for the treatment of insomnia.Method: The insomnia model of rat induced by PCPA was established. After oral administration of ZSS extract, the general morphological observation, pentobarbital sodium-induced sleep test and histopathological evaluation were carried out. Network pharmacology, assisted by UHPLC-Q-Exactive-MS/MS analysis, was developed to identify the targets of ZSS in the treatment of insomnia, as well as the corresponding signaling pathways. In addition, we validated the identified targets and pathways by RT-qPCR and immunohistochemical analysis.Results: The pentobarbital sodium-induced sleep test, determination of 5-HT and GABA levles in hypothalamic tissues and HE staining showed that ZSS extract was an effective treatment for insomnia. Network pharmacology analysis identified a total of 19 candidate bioactive ingredients in ZSS extract, along with 433 potentially related targets. Next, we performed protein-protein interaction (PPI), MCODE clustering analysis, GO functional enrichment analysis, KEGG pathway enrichment analysis, and ingredient-target-pathway (I-T-P) sub-networks analysis. These methods allowed us to investigate the synergistic therapeutic effects of crucial pathways, including the serotonergic and GABAergic synapse pathways. Our analyses revealed that palmitic acid, coclaurine, jujuboside A, N-nornuciferine, caaverine, magnoflorine, jujuboside B, and betulinic acid, all played key roles in the regulation of these crucial pathways. Finally, we used the PCPA-induced insomnia in rats to validate the data generated by network pharmacology; these in vivo experiments clearly showed that pathways associated with the serotonergic and GABAergic system were activated in the rats model. Furthermore, ZSS treatment significantly suppressed high levels of HTR1A, GABRA1, and GABRG2 expression in the hypothalamus and reduced the expression levels of HTR2A.Conclusion: Based on the combination of comprehensive network pharmacology and in vivo experiments, we successfully identified the potential pharmacological mechanisms underlying the action of ZSS in the treatment of insomnia. The results provide a theoretical basis for further development and utilization of ZSS, and also provide support for the development of innovative drugs for the treatment of insomnia.


2021 ◽  
Author(s):  
Subodh Kumar ◽  
Erika Orlov ◽  
Prashanth Gowda ◽  
Chhanda Bose ◽  
Erika Orlov ◽  
...  

MicroRNAs (miRNAs) are found in nerve terminals, synaptic vesicles, and synaptosomes, but it is unclear whether synaptic and cytosolic miRNA populations differ in Alzheimer's disease (AD) or if synaptosomal miRNAs affect AD synapse activity. To address these questions, we generated synaptosomes and cytosolic fractions from postmortem brains of AD and unaffected control (UC) samples and analyzed them using a global Affymetrix miRNAs microarray platform. A group of miRNAs significantly differed (p<0.0001) with high fold changes variance (+/- >200-fold) in their expressions in different comparisons- 1) UC synaptosome vs UC cytosol, 2) AD synaptosomes vs AD cytosol, 3) AD cytosol vs UC cytosol, and 4) AD synaptosomes vs UC synaptosomes. MiRNAs data analysis revealed that some potential miRNAs were consistently different across sample groups. These differentially expressed miRNAs were further validated using AD postmortem brains, brains of APP transgenic (Tg2576), Tau transgenic (P301L), and wild-type mice. The miR-501-3p, miR-502-3p and miR-877-5p were identified as potential synaptosomal miRNAs upregulated with disease progression based on AD Braak stages. Gene Ontology Enrichment and Ingenuity Pathway Analysis of synaptosomal miRNAs showed the involvement of miRNAs in nervous system development, cell junction organization, synapse assembly formation, and function of GABAergic synapse. This is the first description of synaptic versus cytosolic miRNAs in AD and their significance in synapse function.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhike Zhou ◽  
Jun Bai ◽  
Shanshan Zhong ◽  
Rongwei Zhang ◽  
Kexin Kang ◽  
...  

Objective. The objective of this study was to investigate the potential molecular mechanisms of ATPase H+ transporting V1 subunit A (ATP6V1A) underlying Alzheimer’s disease (AD). Methods. Microarray expression data of human temporal cortex samples from the GSE118553 dataset were profiled to screen for differentially expressed genes (DEGs) between AD/control and ATP6V1A-low/high groups. Correlations of coexpression modules with AD and ATP6V1A were assessed by weight gene correlation network analysis (WGCNA). DEGs strongly interacting with ATP6V1A were extracted to construct global regulatory network. Further cross-talking pathways of ATP6V1A were identified by functional enrichment analysis. Diagnostic performance of ATP6V1A in AD prediction was evaluated using area under the curve (AUC) analysis. Results. The mean expression of ATP6V1A was significantly downregulated in AD compared with nondementia controls. A total of 1,364 DEGs were overlapped from AD/control and ATP6V1A-low/high groups. Based on these DEGs, four coexpression modules were predicted by WGCNA. The blue, brown, and turquoise modules were significantly correlated with AD and low ATP6V1A, whose DEGs were enriched in phagosome, oxidative phosphorylation, synaptic vesicle cycle, focal adhesion, and gamma-aminobutyric acidergic (GABAergic) synapse. Global regulatory network was constructed to identify the cross-talking pathways of ATP6V1A, such as synaptic vesicle cycle, phagosome, and oxidative phosphorylation. According to the AUC value of 74.2%, low ATP6V1A expression accurately predicted the occurrence of AD. Conclusions. Our findings highlighted the pleiotropic roles of low ATP6V1A in AD pathogenesis, possibly mediated by synaptic vesicle cycle, phagosome, and oxidative phosphorylation.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jia Xu ◽  
Kaiwu He ◽  
Kaiqin Zhang ◽  
Chao Yang ◽  
Lulin Nie ◽  
...  

Depression is one of the most common neuropsychiatric disorders. Although the pathogenesis of depression is still unknown, environmental risk factors and genetics are implicated. Copper (Cu), a cofactor of multiple enzymes, is involved in regulating depression-related processes. Depressed patients carrying the apolipoprotein ε4 allele display more severe depressive symptoms, indicating that ApoE4 is closely associated with an increased risk of depression. The study explored the effect of low-dose Cu exposure and ApoE4 on depression-like behavior of mice and further investigates the possible mechanisms. The ApoE4 mice and wild-type (WT) mice were treated with 0.13 ppm CuCl2 for 4 months. After the treatment, ApoE4 mice displayed obvious depression-like behavior compared with the WT mice, and Cu exposure further exacerbated the depression-like behavior of ApoE4 mice. There was no significant difference in anxiety behavior and memory behavior. Proteomic analysis revealed that the differentially expressed proteins between Cu-exposed and nonexposed ApoE4 mice were mainly involved in the Ras signaling pathway, protein export, axon guidance, serotonergic synapse, GABAergic synapse, and dopaminergic synapse. Among these differentially expressed proteins, immune response and synaptic function are highly correlated. Representative protein expression changes are quantified by western blot, showing consistent results as determined by proteomic analysis. Hippocampal astrocytes and microglia were increased in Cu-exposed ApoE4 mice, suggesting that neuroglial cells played an important role in the pathogenesis of depression. Taken together, our study demonstrated that Cu exposure exacerbates depression-like behavior of ApoE4 mice and the mechanisms may involve the dysregulation of synaptic function and immune response and overactivation of neuroinflammation.


2021 ◽  
Vol 22 (4) ◽  
pp. 1997
Author(s):  
Maximilian Weiss ◽  
Sabrina Reinehr ◽  
Ana M. Mueller-Buehl ◽  
Johanna D. Doerner ◽  
Rudolf Fuchshofer ◽  
...  

To reveal the pathomechanisms of glaucoma, a common cause of blindness, suitable animal models are needed. As previously shown, retinal ganglion cell and optic nerve degeneration occur in βB1-CTGF mice. Here, we aimed to determine possible apoptotic mechanisms and degeneration of different retinal cells. Hence, retinae were processed for immunohistology (n = 5–9/group) and quantitative real-time PCR analysis (n = 5–7/group) in 5- and 10-week-old βB1-CTGF and wildtype controls. We noted significantly more cleaved caspase 3+ cells in βB1-CTGF retinae at 5 (p = 0.005) and 10 weeks (p = 0.02), and a significant upregulation of Casp3 and Bax/Bcl2 mRNA levels (p < 0.05). Furthermore, more terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL+) cells were detected in transgenic mice at 5 (p = 0.03) and 10 weeks (p = 0.02). Neurofilament H staining (p = 0.01) as well as Nefh (p = 0.02) and Tubb3 (p = 0.009) mRNA levels were significantly decreased at 10 weeks. GABAergic synapse intensity was lower at 5 weeks, while no alterations were noted at 10 weeks. The glutamatergic synapse intensity was decreased at 5 (p = 0.007) and 10 weeks (p = 0.01). No changes were observed for bipolar cells, photoreceptors, and macroglia. We conclude that apoptotic processes and synapse loss precede neuronal death in this model. This slow progression rate makes the βB1-CTGF mice a suitable model to study primary open-angle glaucoma.


2021 ◽  
Vol 14 (2) ◽  
pp. 118
Author(s):  
Yerye Gibrán Mayén-Lobo ◽  
José Jaime Martínez-Magaña ◽  
Blanca Estela Pérez-Aldana ◽  
Alberto Ortega-Vázquez ◽  
Alma Delia Genis-Mendoza ◽  
...  

Clozapine (CLZ) is the only antipsychotic drug that has been proven to be effective in patients with refractory psychosis, but it has also been proposed as an effective mood stabilizer; however, the complex mechanisms of action of CLZ are not yet fully known. To find predictors of CLZ-associated phenotypes (i.e., the metabolic ratio, dosage, and response), we explore the genomic and epigenomic characteristics of 44 patients with refractory psychosis who receive CLZ treatment based on the integration of polygenic risk score (PRS) analyses in simultaneous methylome profiles. Surprisingly, the PRS for bipolar disorder (BD-PRS) was associated with the CLZ metabolic ratio (pseudo-R2 = 0.2080, adjusted p-value = 0.0189). To better explain our findings in a biological context, we assess the protein–protein interactions between gene products with high impact variants in the top enriched pathways and those exhibiting differentially methylated sites. The GABAergic synapse pathway was found to be enriched in BD-PRS and was associated with the CLZ metabolic ratio. Such interplay supports the use of CLZ as a mood stabilizer and not just as an antipsychotic. Future studies with larger sample sizes should be pursued to confirm the findings of this study.


2020 ◽  
Author(s):  
Basavaraj Vastrad ◽  
Chanabasayya Vastrad ◽  
Iranna Kotturshetti

AbstractGenomic features have been gradually regarded as part of the basics to the clinical diagnosis, prognosis and treatment for glioblastoma multform (GBM). However, the molecular modifications taking place during the advancement of GBM remain unclear. Therefore, recognition of potential important genes and pathways in the gastric cancer progression is important to clinical practices. In the present study, gene expression dataset (GSE116520) of GBM were selected from the Gene Expression Omnibus (GEO) database and were further used to identify differentially expressed genes (DEGs). Then, pathway and Gene Ontology (GO) enrichment analyses were conducted, and a protein-protein interaction (PPI) network was constructed to explore the potential mechanism of GBM carcinogenesis. Significant modules were discovered using the PEWCC1 plugin for Cytoscape. In addition, a target gene - miRNA regulatory network and target gene - TF regulatory network in GBM were constructed using common deregulated miRNAs, TFs and DEGs. Finally, we carried on validation of hub genes by UALCAN, cBioporta, human protein atlas, ROC (Receiver operating characteristic) curve analysis, RT-PCR and immune infiltration analysis. The results indicated that a total of 947 differential expressed genes (DEGs) (477 up regulated and 470 down regulated) was identified in microarray profiles. Pathway enrichment analysis revealed that DEGs (up and down regulated) were mainly associated in reactive oxygen species degradation, ribosome, homocarnosine biosynthesis and GABAergic synapse, whereas GO enrichment analyses revealed that DEGs (up and down regulated) were mainly associated in macromolecule catabolic process, cytosolic part, synaptic signaling and synapse part as the main pathways associated in these processes. Finally, we filtered out hub genes, including MYC, ARRB1, RPL7A, SNAP25, SOD2, SVOP, ABCC3 and ABCA2, from the all networks. Validation of hub genes suggested the robustness of the above results. In conclusion, these results provided novel and reliable biomarkers for GBM, which will be useful for further clinical applications in GBM diagnosis, prognosis and targeted therapy.


2020 ◽  
Author(s):  
Subhadra Mokashe ◽  
Suhita Nadkarni

ABSTRACTNeuronal networks maintain robust patterns of activity despite a backdrop of noise from various sources. Mutually inhibiting neurons is a standard network motif implicated in rhythm generation. In an elementary network motif of two neurons capable of swapping from an active state to a quiescent state, we ask how different sources of stochasticity alter firing patterns. In this system, the alternating activity occurs via combined action of a calcium-dependent potassium current, sAHP (slow afterhyperpolarization), and a fast GABAergic synapse. We show that simulating extrinsic noise arising from background activity extends the dynamical range of neuronal firing. Extrinsic noise also has the effect of increasing the switching frequency via a faster build-up of sAHP current. We show that switching frequency as a function of input current has a non-monotonic behavior. Interestingly the noise tolerance of this system varies with the input current. It shows maximum robustness to noise at an input current that corresponds to the minimum switching frequency between the neurons. The slow decay time scale of sAHP conductance allows neurons to act as a low-pass filter, attenuate noise, and integrate over ion channel fluctuations. Additionally, we show that the slow inactivation time of the sAHP channel allows the neuron to act as an action potential counter. We propose that this intrinsic property of the current allows the network to maintain rhythmic activity critical for various functions, despite the noise, and operate as a temporal integrator.


2020 ◽  
Author(s):  
Jyoti Prakash Tamang ◽  
H. Nakibapher Jones Shangpliang ◽  
Ranjita Rai

Abstract Background: Naturally fermented milk (NFM) products are popular food delicacies in Indian states of Sikkim and Arunachal Pradesh. Bacterial communities in these NFM products of India were previously analysed by high-throughput sequence method. However, predictive gene functionality of NFM products of India has not been studied. In this study, raw sequences of NFM products of Sikkim and Arunachal Pradesh were accessed from NCBI database server. PICRUSt2 and Piphillin tools were applied to study microbial functional gene prediction in combination with the commonly used error-corrected denoising programs like DADA2 and Deblur.Results: Significant functional hits were observed from the Piphillin analysis which included some interesting pathways including GABAergic synapse, glutamatergic synapse and serotonergic synapse, which are known to be probiotic-related, among others that are absent in PICRUSt2 analysis. This study also showed the negative correlation of lactic acid bacteria (LAB) members (Lactococcus, Lactobacillus, Leuconostoc) with most of the disease-related functions, which were on the other hand, positively correlated with unwanted contaminants like Staphylococcus, Bacillus and Pseudomonas.Conclusion: The study explored the potential of microbial functional gene prediction using PICRUSt2 and Piphillin software, and indicated the significance of the presence of LAB in these NFM products of India. Since most LAB members are known to be potential health-promoting bacteria, their negative correlation to many of the disease-related functions also indicates their role in combatting unwanted potential contaminants.


Author(s):  
Shekib A. Jami ◽  
Scott Cameron ◽  
Jonathan M. Wong ◽  
Emily R. Daly ◽  
A. Kimberley McAllister ◽  
...  

AbstractThere is substantial evidence that both NMDA receptor (NMDAR) hypofunction and dysfunction of GABAergic neurotransmission contribute to schizophrenia, though the relationship between these pathophysiological processes remains largely unknown. While models using cell-type-specific genetic deletion of NMDARs have been informative, they display overly pronounced phenotypes extending beyond those of schizophrenia. Here, we used the serine racemase knockout (SRKO) mice, a model of reduced NMDAR activity rather than complete receptor elimination, to examine the link between NMDAR hypofunction and decreased GABAergic inhibition. The SRKO mice, in which there is a >90% reduction in the NMDAR co-agonist D-serine, exhibit many of the neurochemical and behavioral abnormalities observed in schizophrenia. We found a significant reduction in inhibitory synapses onto CA1 pyramidal neurons in the SRKO mice. This reduction increases the excitation/inhibition balance resulting in enhanced synaptically-driven neuronal excitability and elevated broad-spectrum oscillatory activity in ex vivo hippocampal slices. Consistently, significant reductions in inhibitory synapse density in CA1 were observed by immunohistochemistry. We further show, using a single-neuron genetic deletion approach, that the loss of GABAergic synapses onto pyramidal neurons observed in the SRKO mice is driven in a cell-autonomous manner following the deletion of SR in individual CA1 pyramidal cells. These results support a model whereby NMDAR hypofunction in pyramidal cells disrupts GABAergic synapse development leading to disrupted feedback inhibition and impaired neuronal synchrony.


Sign in / Sign up

Export Citation Format

Share Document