Faculty Opinions recommendation of Tracing the origin of the fungal α1 domain places its ancestor in the HMG-box superfamily: implication for fungal mating-type evolution.

Author(s):  
Joseph Heitman ◽  
Soo Chan Lee
Keyword(s):  
Hmg Box ◽  
PLoS ONE ◽  
2010 ◽  
Vol 5 (12) ◽  
pp. e15199 ◽  
Author(s):  
Tom Martin ◽  
Shun-Wen Lu ◽  
Herman van Tilbeurgh ◽  
Daniel R. Ripoll ◽  
Christina Dixelius ◽  
...  
Keyword(s):  
Hmg Box ◽  

2000 ◽  
Vol 13 (12) ◽  
pp. 1330-1339 ◽  
Author(s):  
Tsutomu Arie ◽  
Isao Kaneko ◽  
Takanobu Yoshida ◽  
Masami Noguchi ◽  
Yoshikuni Nomura ◽  
...  

Mating-type (MAT) loci were cloned from two asexual (mitosporic) phytopathogenic ascomycetes, Fusarium oxysporum (a pyrenomycete) and Alternaria alternata (a loculoascomycete), by a polymerase chain reaction (PCR)-based strategy. The conserved high mobility group (HMG) box domain found in the MAT1-2-1 protein was used as a starting point for cloning and sequencing the entire MAT1-2 idiomorph plus flanking regions. Primer pairs designed to both flanking regions were used to amplify the opposite MAT1-1 idiomorph. The MAT1-1 and MAT1-2 idiomorphs were approximately 4.6 and 3.8 kb in F. oxysporum and approximately 1.9 and 2.2 kb in A. alternata, respectively. In both species, the MAT1-1 idiomorph contains at least one gene that encodes a protein with a putative alpha box domain and the MAT1-2 idiomorph contains one gene that encodes a protein with a putative HMG box domain. MAT-specific primers were used to assess the mating type of F. oxysporum and A. alternata field isolates by PCR. MAT genes from A. alternata were expressed. The A. alternata genes were confirmed to be functional in a close sexual relative, Cochliobolus heterostrophus, by heterologous expression.


2003 ◽  
Vol 13 (20) ◽  
pp. R792-R795 ◽  
Author(s):  
James A. Fraser ◽  
Joseph Heitman
Keyword(s):  

Genetics ◽  
1994 ◽  
Vol 137 (3) ◽  
pp. 715-722 ◽  
Author(s):  
M L Philley ◽  
C Staben

Abstract The Neurospora crassa mt a-1 gene, encoding the MT a-1 polypeptide, determines a mating type properties: sexual compatibility and vegetative incompatibility with A mating type. We characterized in vivo and in vitro functions of the MT a-1 polypeptide and specific mutant derivatives. MT a-1 polypeptide produced in Escherichia coli bound to specific DNA sequences whose core was 5'-CTTTG-3'. DNA binding was a function of the MT a-1 HMG box domain (a DNA binding motif found in high mobility group proteins and a diverse set of regulatory proteins). Mutation within the HMG box eliminated DNA binding in vitro and eliminated mating in vivo, but did not interfere with vegetative incompatibility function in vivo. Conversely, deletion of amino acids 216-220 of MT a-1 eliminated vegetative incompatibility, but did not affect mating or DNA binding. Deletion of the carboxyl terminal half of MT a-1 eliminated both mating and vegetative incompatibility in vivo, but not DNA binding in vitro. These results suggest that mating depends upon the ability of MT a-1 polypeptide to bind to, and presumably to regulate the activity of, specific DNA sequences. However, the separation of vegetative incompatibility from both mating and DNA binding indicates that vegetative incompatibility functions by a biochemically distinct mechanism.


2019 ◽  
Vol 37 (3) ◽  
pp. 668-682 ◽  
Author(s):  
Fanny E Hartmann ◽  
Ricardo C Rodríguez de la Vega ◽  
Pierre Gladieux ◽  
Wen-Juan Ma ◽  
Michael E Hood ◽  
...  

Abstract Nonrecombining sex chromosomes are widely found to be more differentiated than autosomes among closely related species, due to smaller effective population size and/or to a disproportionally large-X effect in reproductive isolation. Although fungal mating-type chromosomes can also display large nonrecombining regions, their levels of differentiation compared with autosomes have been little studied. Anther-smut fungi from the Microbotryum genus are castrating pathogens of Caryophyllaceae plants with largely nonrecombining mating-type chromosomes. Using whole genome sequences of 40 fungal strains, we quantified genetic differentiation among strains isolated from the geographically overlapping North American species and subspecies of Silene virginica and S. caroliniana. We inferred that gene flow likely occurred at the early stages of divergence and then completely stopped. We identified large autosomal genomic regions with chromosomal inversions, with higher genetic divergence than the rest of the genomes and highly enriched in selective sweeps, supporting a role of rearrangements in preventing gene flow in genomic regions involved in ecological divergence. Unexpectedly, the nonrecombining mating-type chromosomes showed lower divergence than autosomes due to higher gene flow, which may be promoted by adaptive introgressions of less degenerated mating-type chromosomes. The fact that both mating-type chromosomes are always heterozygous and nonrecombining may explain such patterns that oppose to those found for XY or ZW sex chromosomes. The specific features of mating-type chromosomes may also apply to the UV sex chromosomes determining sexes at the haploid stage in algae and bryophytes and may help test general hypotheses on the evolutionary specificities of sex-related chromosomes.


1992 ◽  
Vol 96 (12) ◽  
pp. 993-1006 ◽  
Author(s):  
Ursula Kües ◽  
Lorna A. Casselton

1992 ◽  
Vol 11 (5) ◽  
pp. 1805-1813 ◽  
Author(s):  
A.M. Tymon ◽  
U. Kües ◽  
W.V. Richardson ◽  
L.A. Casselton

Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1753-1761 ◽  
Author(s):  
Yukio Murata ◽  
Motohiro Fujii ◽  
Miriam E Zolan ◽  
Takashi Kamada

Abstract A homokaryotic strain (5337) in our culture stock of Coprinus cinereus produced fertile fruit bodies after prolonged culture. Microscopic examination revealed that hyphae dedifferentiated from the tissues of one of the fruit bodies, as well as all basidiospore derivatives from the fruit body, exhibited pseudoclamps, whereas vegetative hyphae of 5337, from which the fruit body developed, had no clamp connections. Genetic analysis showed that the formation of pseudoclamps results from a recessive mutation in a gene designated pcc1 (pseudoclamp connection formation), which is distinct from the A and B mating type genes. Cloning and sequencing of the pcc1 gene and cDNA identified an ORF of 1683 bp interrupted by one intron. Database searches revealed that pcc1 encodes an SRY-type HMG protein. The HMG box shared 44, 41, and 29% sequence identities (>80 amino acids) to those of FPR1 of Podospora anserina, MAT-Mc of Schizosaccharomyces pombe, and prf1 of Ustilago maydis, respectively. Northern analysis revealed that the level of pcc1 expression is higher in the dikaryon, in homokaryons in which the A and B mating type developmental sequences are individually activated, than in the homokaryon in which these sequences are not active. Sequencing of the pcc1-1 mutant allele revealed that the mutant carries a nonsense mutation at serine 211, a residue located between the HMG box and the C terminus. Based on these results, possible roles of the pcc1 gene in the sexual development of homobasidiomycetes are discussed.


2004 ◽  
Vol 70 (8) ◽  
pp. 4419-4423 ◽  
Author(s):  
Zoltán Kerényi ◽  
Antonio Moretti ◽  
Cees Waalwijk ◽  
Brigitta Oláh ◽  
László Hornok

ABSTRACT To assess the potential for mating in several Fusarium species with no known sexual stage, we developed degenerate and semidegenerate oligonucleotide primers to identify conserved mating type (MAT) sequences in these fungi. The putative α and high-mobility-group (HMG) box sequences from Fusarium avenaceum, F. culmorum, F. poae, and F. semitectum were compared to similar sequences that were described previously for other members of the genus. The DNA sequences of the regions flanking the amplified MAT regions were obtained by inverse PCR. These data were used to develop diagnostic primers suitable for the clear amplification of conserved mating type sequences from any member of the genus Fusarium. By using these diagnostic primers, we identified mating types of 122 strains belonging to 22 species of Fusarium. The α box and the HMG box from the mating type genes are transcribed in F. avenaceum, F. culmorum, F. poae, and F. semitectum. The novelty of the PCR-based mating type identification system that we developed is that this method can be used on a wide range of Fusarium species, which have proven or expected teleomorphs in different ascomycetous genera, including Calonectria, Gibberella, and Nectria.


Sign in / Sign up

Export Citation Format

Share Document