Lesion concordance, image quality and artefacts in PET/CT

2010 ◽  
Vol 49 (04) ◽  
pp. 129-137 ◽  
Author(s):  
B. J. Krause ◽  
S. M. Eschmann ◽  
K. U. Juergens ◽  
H. Kuehl ◽  
A. C. Pfannenberg ◽  
...  

Summary Aim: This study had three major objectives: 1.) to record the number of concordant (both in PET and CT) pathological lesions in different body regions/organs, 2.) to evaluate the image quality and 3.) to determine both, the quantity and the quality of artefacts in whole body FDG PET/CT scans. Patients, methods: Routine whole body scans of 353 patients referred to FDG-PET/ CT exams at 4 university hospitals were employed. All potentially malignant lesions in 13 different body regions/organs were classified as either concordant or suspicious in FDG-PET or CT only. In the latter case the diagnostic relevance of this disparity was judged. The image quality in PET and CT was rated as a whole and separately in 5 different body regions. Furthermore we investigated the frequency and site of artefacts caused by metal implants and oral or intravenous contrast media as well as the subjective co-registration quality (in 4 body regions) and the diagnostic impact of such artefacts or misalignment. In addition, the readers rated the diagnostic gain of adding the information from the other tomographic method. Results: In total 1941 lesions (5.5 per patient) were identified, 1094 (56%) out of which were concordant. 602 (71%) out of the 847 remaining lesions were detected only with CT, 245 (29%) were only PET-positive. As expected, CT particularly depicted the majority of lesions in the lungs and abdominal organs. However, the diagnostic relevance was greater with PET-only positive lesions. Most of the PET/CT scans were performed with full diagnostic CT including administration of oral and intravenous contrast media (> 80%). The image quality in PET and CT was rated excellent. Artefacts occurred in more than 60% of the scans and were mainly due to (dental) metal implants and contrast agent. Nevertheless there was almost no impact on diagnostic confidence if reading of the non attenuation corrected PET was included. The co-registration quality in general was also rated as excellent. Misalignment mostly occurred due to patient motion and breathing and led to diagnostic challenges in about 4% of all exams. The diagnostic gain of adding PET to a CT investigation was rated higher than vice versa. Conclusions: As the image quality in both PET and CT was more than satisfying, CT-artefacts almost never led to diagnostic uncertainties and serious misalignment rarely occurred, PET/CT can be considered as suitable for routine use and may replace single PET- and CT-scans. However, additional reading of the non attenuation corrected PET is mandatory to assure best possible diagnostic confidence in PET. Since approximately half of all lesions found in PET/CT were not concordant, at least in a setting with a diagnostic CT the exams need to be reported by both a nuclear medicine physician and a radiologist in consensus.

Author(s):  
E. Valls ◽  
J.R. Garcia ◽  
R. Rodriguez ◽  
M. Soler ◽  
M. Moragas ◽  
...  

2017 ◽  
Vol 6 (10) ◽  
pp. 205846011773880 ◽  
Author(s):  
Eva Dyrberg ◽  
Helle W. Hendel ◽  
Gina Al-Farra ◽  
Lone Balding ◽  
Vibeke B. Løgager ◽  
...  

Background For decades, the most widely used imaging technique for myeloma bone lesions has been a whole-body skeletal X-ray survey (WBXR), but newer promising imaging techniques are evolving. Purpose To compare WBXR with the advanced imaging techniques 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT), 18F-sodium fluoride (NaF) PET/CT and whole-body magnetic resonance imaging (WB-MRI) in the detection of myeloma bone lesions. Material and Methods Fourteen patients with newly diagnosed multiple myeloma were prospectively enrolled. In addition to WBXR, all patients underwent FDG-PET/CT, NaF-PET/CT, and WB-MRI. Experienced specialists performed blinded readings based on predefined anatomical regions and diagnostic criteria. Results In a region-based analysis, a two-sided ANOVA test showed that the extent of detected skeletal disease depends on the scanning technique ( P < 0.0001). Tukey’s multiple comparison test revealed that WB-MRI on average detects significantly more affected regions than WBXR ( P < 0.005), FDG-PET/CT ( P < 0.0001), and NaF-PET/CT ( P < 0.05). In a patient-based analysis, a Cochran’s Q test showed that there are no significant differences in the proportion of patients with bone disease detected by the different scanning techniques ( P = 0.23). Determination of intrareader variability resulted in Kappa coefficients corresponding to moderate (FDG-PET/CT) and substantial agreement (WB-MRI, WBXR, NaF-PET/CT). Conclusion WB-MRI detects on average significantly more body regions indicative of myeloma bone disease compared to WBXR, FDG-PET/CT, and NaF-PET/CT. The lack of significance in the patient-based analysis is most likely due to the small number of study participants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia Pilz ◽  
Lukas Hehenwarter ◽  
Georg Zimmermann ◽  
Gundula Rendl ◽  
Gregor Schweighofer-Zwink ◽  
...  

Abstract Background High-performance time-of-flight (TOF) positron emission tomography (PET) systems have the capability for rapid data acquisition while preserving diagnostic image quality. However, determining a reliable and clinically applicable cut-off of the acquisition time plays an important role in routine practice. This study aimed to assess the diagnostic equivalence of short acquisition time of 57 with routine 75 seconds per bed position (s/BP) of [18F]-fluoro-deoxy-glucose (FDG) PET. Phantom studies applying EARL criteria suggested the feasibility of shortened acquisition time in routine clinical imaging by 3D TOF PET/CT scanners. Ninety-six patients with melanoma, lung or head and neck cancer underwent a standard whole-body, skull base-to-thigh or vertex-to-thigh [18F]-FDG PET/CT examination using the 3D TOF Ingenuity TF PET/CT system (Philips, Cleveland, OH). The [18F]-FDG activity applied was equal to 4MBq per kg body weight. Retrospectively, PET list-mode data were used to calculate a second PET study per patient with a reduced acquisition time of 57 s instead of routine 75 s/BP. PET/CT data were reconstructed using a 3D OSEM TOF algorithm. Blinded patient data were analysed by two nuclear medicine physicians. The number of [18F]-FDG-avid lesions per body region (head&neck, thorax, abdomen, bone, extremity) and image quality (grade 1–5) were evaluated. Semiquantitative analyses were performed by standardized uptake value (SUV) measurements using 3D volume of interests (VOI). The visual and semiquantitative diagnostic equivalence of 214 [18F]-FDG-avid lesions were analysed in the routine standard (75 s/BP) as well as the calculated PET/CT studies with short acquisition time. Statistical analyses were performed by equivalence testing and Bland–Altman plots. Results Lesion detection rate per patient’s body region agreed in > 98% comparing 57 s/BP and 75 s/BP datasets. Overall image quality was determined as equal or superior to 75 s in 80% and 69%, respectively. In the semiquantitative lesion-based analyses, a significant equivalence was found between the 75 s/BP and 57 s/BP PET/CT images both for SUVmax (p = 0.004) and SUVmean (p = 0.003). Conclusion The results of this study demonstrate significant clinical and semiquantitative equivalence between short acquisition time of 57 s/BP and standard 75 s/BP 3D TOF [18F]-FDG PET/CT scanning, which may improve the patient’s workflow in routine practice.


2014 ◽  
Vol 4 (6) ◽  
pp. 825-831
Author(s):  
Frederic Sampedro ◽  
Anna Domenech ◽  
Sergio Escalera
Keyword(s):  
Fdg Pet ◽  
Ct Scans ◽  
Pet Ct ◽  

Author(s):  
Hunor Kertész ◽  
Thomas Beyer ◽  
Kevin London ◽  
Hamda Saleh ◽  
David Chung ◽  
...  

Abstract Purpose To investigate the possibility of reducing the injected activity for whole-body [18F]FDG-PET/CT studies of paediatric oncology patients and to assess the usefulness of time-of-flight (TOF) acquisition on PET image quality at reduced count levels. Procedures Twenty-nine paediatric oncology patients (12F/17M, 3–18 years old (median age 13y), weight 45±20 kg, BMI 19±4 kg/m2), who underwent routine whole-body PET/CT examinations on a Siemens Biograph mCT TrueV system with TOF capability (555ps) were included in this study. The mean injected activity was 156 ± 45 MBq (3.8 ± 0.8 kg/MBq) and scaled to patient weight. The raw data was collected in listmode (LM) format and pre-processed to simulate reduced levels of [18F]FDG activity (75, 50, 35, 20 and 10% of the original counts) by randomly removing events from the original LM data. All data were reconstructed using the vendor-specific e7-tools with standard OSEM only, with OSEM plus resolution recovery (PSF). The reconstructions were repeated with added TOF (TOF) and PSF+TOF. The benefit of TOF together with the reduced count levels was evaluated by calculating the gains in signal-to-noise ratio (SNR) in the liver and contrast-to-noise ratio (CNR) in all PET-positive lesions before and after TOF employed at every simulated reduced count level. Finally, the PSF+TOF images at 50, 75 and 100% of counts were evaluated clinically on a 5-point scale by three nuclear medicine physicians. Results The visual inspection of the reconstructed images did not reveal significant differences in image quality between 75 and 100% count levels for PSF+TOF. The improvements in SNR and CNR were the greatest for TOF reconstruction and PSF combined. Both SNR and CNR gains did increase linearly with the patients BMI for both OSEM only and PSF reconstruction. These benefits were observed until reducing the counts to 50 and 35% for SNR and CNR, respectively. Conclusions The benefit of using TOF was noticeable when using 50% or greater of the counts when evaluating the CNR and SNR. For [18F]FDG-PET/CT, whole-body paediatric imaging the injected activity can be reduced to 75% of the original dose without compromising PET image quality.


2021 ◽  
Author(s):  
F Büther ◽  
J Hamill ◽  
J Jones ◽  
KP Schäfers ◽  
P Schleyer ◽  
...  

Author(s):  
David Wallis ◽  
Michaël Soussan ◽  
Maxime Lacroix ◽  
Pia Akl ◽  
Clément Duboucher ◽  
...  

Abstract Purpose The identification of pathological mediastinal lymph nodes is an important step in the staging of lung cancer, with the presence of metastases significantly affecting survival rates. Nodes are currently identified by a physician, but this process is time-consuming and prone to errors. In this paper, we investigate the use of artificial intelligence–based methods to increase the accuracy and consistency of this process. Methods Whole-body 18F-labelled fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography/computed tomography ([18F]FDG-PET/CT) scans (Philips Gemini TF) from 134 patients were retrospectively analysed. The thorax was automatically located, and then slices were fed into a U-Net to identify candidate regions. These regions were split into overlapping 3D cubes, which were individually predicted as positive or negative using a 3D CNN. From these predictions, pathological mediastinal nodes could be identified. A second cohort of 71 patients was then acquired from a different, newer scanner (GE Discovery MI), and the performance of the model on this dataset was tested with and without transfer learning. Results On the test set from the first scanner, our model achieved a sensitivity of 0.87 (95% confidence intervals [0.74, 0.94]) with 0.41 [0.22, 0.71] false positives/patient. This was comparable to the performance of an expert. Without transfer learning, on the test set from the second scanner, the corresponding results were 0.53 [0.35, 0.70] and 0.24 [0.10, 0.49], respectively. With transfer learning, these metrics were 0.88 [0.73, 0.97] and 0.69 [0.43, 1.04], respectively. Conclusion Model performance was comparable to that of an expert on data from the same scanner. With transfer learning, the model can be applied to data from a different scanner. To our knowledge it is the first study of its kind to go directly from whole-body [18F]FDG-PET/CT scans to pathological mediastinal lymph node localisation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4666-4666
Author(s):  
Skander Jemaa ◽  
Jill Fredrickson ◽  
Alexandre Coimbra ◽  
Richard AD Carano ◽  
Tarec Christoffer C. El-Galaly ◽  
...  

Introduction: Baseline total metabolic tumor volume (TMTV) from FDG-PET/CT scans has been shown to be prognostic for progression-free survival (PFS) in diffuse large B-cell lymphoma (DLBCL; Kostakoglu et al. Blood 2017) and follicular lymphoma (FL; Meignan et al. J Clin Oncol 2016). Fully automated TMTV measurements could increase reproducibility and enable results in real-time after a PET/CT scan. Although numerous methods for tumor segmentation on FDG PET images are published, they typically involve a manual step to identify a point within each tumor, performed by a trained reader, followed by semi-automatic identification of the tumor margins. To allow for rapid segmentation of whole body metabolic tumor burden, we developed a fully automated approach based on deep learning algorithms. Methods: An image processing pipeline was developed using FDG-PET/CT images from two large Phase III, multicenter trials, in first-line (1L) DLBCL (GOYA, NCT01287741, n=1418) and FL (GALLIUM, NCT01332968, n=1401). FDG-PET/CT scans were acquired according to a standardized imaging charter using a range of scanner models. Images were automatically preprocessed and used as inputs to cascaded 2D and region-specific 3D convolutional neural networks. The resulting tumor masks were then used for feature extraction. For simplicity, our prognostic analysis is limited to three variables: TMTV, number of identified lesions, and bulky disease (longest tumor diameter >7.5cm). For tumor segmentation, neural networks were trained on 2,266 scans from 1,133 patients in GOYA, and tested (out-of-sample) on 1,064 scans from 532 patients with evaluable baseline and end-of-treatment scans in GALLIUM. Manually directed, semi-automated tumor masks reviewed by board certified radiologists were used as ground truth for both training and testing. Based on the extracted tumor information, prognostic analyses for PFS were conducted on 1,139 evaluable pretreatment PET/CT scans from GOYA, and 541 patients from GALLIUM. Kaplan-Meier methodology was used for survival analysis, and a Cox proportional hazards (CPH) model was used for multivariate analysis. Results: From the out-of-sample validation step, the Dice Similarity Coefficient for the segmented tumor burden was 0.886, while the voxelwise sensitivity was 0.926. The lesion-level correlation between extracted and measured TMTV was 0.987. For PFS in the 1L DLBCL trial (GOYA), our calculated patient-level TMTV quartiles closely replicate the prognostic results of the semi-automated analysis reported by Kostakoglu et al. (Fig 1A, Table 1). A high lesion count above Q3 (>12 lesions [Fig 1B]) and bulky disease were also prognostic for PFS. To evaluate the prognostic value of the derived metrics, a simple risk score (RS) was constructed by considering the quantity: RS-DLBCL = 𝟙(TMTV >330ml) + 𝟙(nr. lesions ≥12) + 𝟙(bulky disease >1), where 𝟙(.) denotes the indicator function and 330ml is the median TMTV in GOYA. Multivariate CPH analysis verified the unique contribution of RS-DLBCL (p<0.0005) when added to the International Prognostic Index (IPI) score (p<0.01); derived from the multivariate model, the estimated HRs for RS-DLBCL are given in Table 2. In the 1L FL trial (GALLIUM), baseline TMTV >510mL was prognostic for PFS (HR, 1.59; p<0.013; Fig 1C). A high lesion count above Q3 (>18 lesions) and bulky disease (Fig 1D) were also prognostic. Three-year PFS for patients with TMTV <510mL was 85.1% (81.3-89.1%), while for TMTV >510mL, it was 77.3% (71.3-83.7%). A RS for 1L FL was defined similarly as for DLBCL: RS-FL = 𝟙(TMTV >510ml) + 𝟙(nr. lesions >18) + 𝟙(bulky disease). RS-FL (p<0.034) was significant when added to a CPH model with FLIPI (p<0.024). Estimated HRs for RS-FL after adjusting for FLIPI are given in Table 2. Conclusion: We present a novel approach for a fully automated whole body metabolic tumor burden segmentation on FDG-PET/CT scans for non-Hodgkin lymphoma patients. This method allows for the extraction of a range of tumor burden features from FDG-PET/CT. For example, TMTV, number of lesions, and bulky disease-features shown to be prognostic for PFS-in addition to known factors such as IPI/FLIPI. Our method is fast and produces a complete pt-level assessment in <5mins. Further development including clinical and biomarker covariates, and considering organ involvement, may yield better prognostic performance to identify pts who are likely to progress within 1-2 years. Disclosures Jemaa: Genentech, Inc./F. Hoffmann-La Roche Ltd: Employment. Fredrickson:Genentech, Inc.: Employment; F. Hoffmann-La Roche Ltd: Equity Ownership. Coimbra:Genentech, Inc.: Employment. Carano:Genentech, Inc.: Employment; F. Hoffmann-La Roche Ltd: Equity Ownership. El-Galaly:Takeda: Other: Travel support; Roche: Employment, Other: Travel support. Knapp:F. Hoffmann-La Roche Ltd: Employment. Nielsen:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Sahin:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Bengtsson:Genentech, Inc.: Employment; F. Hoffmann-La Roche Ltd: Equity Ownership. de Crespigny:Genentech, Inc.: Employment; F. Hoffmann-La Roche Ltd: Equity Ownership.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gil-Sun Hong ◽  
Eun Jin Chae ◽  
Jin-Sook Ryu ◽  
Sun Young Chae ◽  
Hyo Sang Lee ◽  
...  

Abstract Background We prospectively evaluated the diagnostic utility of whole-body diffusion-weighted imaging with background body signal suppression and T2-weighted short-tau inversion recovery MRI (WB-DWIBS/STIR) for the pretherapeutic staging of indolent lymphoma in 30 patients. Methods This prospective study included 30 treatment-naive patients with indolent lymphomas who underwent WB-DWIBS/STIR and conventional imaging workup plus biopsy. The pretherapeutic staging agreement, sensitivity, and specificity of WB-DWIBS/STIR were investigated with reference to the multimodality and multidisciplinary consensus review for nodal and extranodal lesions excluding bone marrow. Results In the pretherapeutic staging, WB-DWIBS/STIR showed very good agreement (κ = 0.96; confidence interval [CI], 0.88–1.00), high sensitivity (93.4–95.1%), and high specificity (99.0–99.4%) for the whole-body regions. These results were similar to those of 18F-FDG-PET/CT, except for the sensitivity for extranodal lesions. For extranodal lesions, WB-DWIBS/STIR showed higher sensitivity compared to 18F-FDG-PET/CT for the whole-body regions (94.9–96.8% vs. 79.6–86.3%, P = 0.058). Conclusion WB-DWIBS/STIR is an effective modality for the pretherapeutic staging of indolent lymphoma, and it has benefits when evaluating extranodal lesions, compared with 18F-FDG-PET/CT.


Sign in / Sign up

Export Citation Format

Share Document