scholarly journals Magnetic Force Enhanced Sustainability and Power of Cam-Based Triboelectric Nanogenerator

Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11 ◽  
Author(s):  
Hakjeong Kim ◽  
Hee Jae Hwang ◽  
Nghia Dinh Huynh ◽  
Khanh Duy Pham ◽  
Kyungwho Choi ◽  
...  

Since the first invention of triboelectric nanogenerators (TENGs) in 2012, many mechanical systems have been applied to operate TENGs, but mechanical contact losses such as friction and noise are still big obstacles for improving their output performance and sustainability. Here, we report on a magnet-assembled cam-based TENG (MC-TENG), which has enhanced output power and sustainability by utilizing the non-contact repulsive force between the magnets. We investigate the theoretical and experimental dynamic behaviors of MC-TENGs according to the effects of the contact modes, contact and separation times, and contact forces (i.e., pushing and repulsive forces). We suggest an optimized arrangement of magnets for the highest output performance, in which the charging time of the capacitor was 2.59 times faster than in a mechanical cam-based TENG (C-TENG). Finally, we design and demonstrate a MC-TENG-based windmill system to effectively harvest low-speed wind energy, ~4 m/s, which produces very low torque. Thus, it is expected that our frictionless MC-TENG system will provide a sustainable solution for effectively harvesting a broadband of wasted mechanical energies.


Author(s):  
Zixi Chen ◽  
Yule Cao ◽  
Weifeng Yang ◽  
Lin An ◽  
Hongwei Fan ◽  
...  

Embedding active fillers into polymers to construct composite materials is an effective way to enhance the output performance of triboelectric nanogenerators (TENGs). Among various kinds of fillers, 2D fillers showed...



Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 407 ◽  
Author(s):  
Hyun-Woo Park ◽  
Nghia Huynh ◽  
Wook Kim ◽  
Hee Hwang ◽  
Hyunmin Hong ◽  
...  

Triboelectric nanogenerators (TENGs) are used as self-power sources for various types of devices by converting external waves, wind, or other mechanical energies into electric power. However, obtaining a high-output performance is still of major concern for many applications. In this study, to enhance the output performance of polydimethylsiloxane (PDMS)-based TENGs, highly dielectric TiO2−x nanoparticles (NPs) were embedded as a function of weight ratio. TiO2−x NPs embedded in PDMS at 5% showed the highest output voltage and current. The improved output performance at 5% is strongly related to the change of oxygen vacancies on the PDMS surface, as well as the increased dielectric constant. Specifically, oxygen vacancies in the oxide nanoparticles are electrically positive charges, which is an important factor that can contribute to the exchange and trapping of electrons when driving a TENG. However, in TiO2−x NPs containing over 5%, the output performance was significantly degraded because of the increased leakage characteristics of the PDMS layer due to TiO2−x NPs aggregation, which formed an electron path.



2018 ◽  
Vol 6 (1) ◽  
pp. 52-57 ◽  
Author(s):  
Zhenggang Fang ◽  
Kwok Hoe Chan ◽  
Xin Lu ◽  
Chuan Fu Tan ◽  
Ghim Wei Ho

Triboelectric nanogenerators with enhanced output performance by surface texturing and dielectric constant control.



Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 551 ◽  
Author(s):  
Moonwoo La ◽  
Jun Choi ◽  
Jeong-Young Choi ◽  
Taek Hwang ◽  
Jeongjin Kang ◽  
...  

Triboelectric nanogenerators (TENG), which utilize contact electrification of two different material surfaces accompanied by electrical induction has been proposed and is considered as a promising energy harvester. Researchers have attempted to form desired structures on TENG surfaces and successfully demonstrated the advantageous effect of surface topography on its electrical output performance. In this study, we first propose the structured Al (SA)-assisted TENG (SA-TENG), where one of the contact layers of the TENG is composed of a structured metal surface formed by a metal-to-metal (M2M) imprinting process. The fabricated SA-TENG generates more than 200 V of open-circuit voltage and 60 µA of short-circuit current through a simple finger tapping motion. Given that the utilization of the M2M imprinting process allows for the rapid, versatile and easily accessible structuring of various metal surfaces, which can be directly used as a contact layer of the TENG to substantially enhance its electrical output performance, the present study may considerably broaden the applicability of the TENG in terms of its fabrication standpoint.



2019 ◽  
Vol 9 (44) ◽  
pp. 1902725 ◽  
Author(s):  
Lingxiao Gao ◽  
Xin Chen ◽  
Shan Lu ◽  
Hong Zhou ◽  
Weibo Xie ◽  
...  




Nano Energy ◽  
2021 ◽  
Vol 86 ◽  
pp. 106126
Author(s):  
Ruey-Chi Wang ◽  
Yu-Cheng Lin ◽  
Po-Tsang Chen ◽  
Hsiu-Cheng Chen ◽  
Wan-Ting Chiu


2021 ◽  
Vol 13 (5) ◽  
pp. 6331-6338
Author(s):  
Dong Guan ◽  
Guoqiang Xu ◽  
Xin Xia ◽  
Jiaqi Wang ◽  
Yunlong Zi


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1111
Author(s):  
Changmei Lin ◽  
Duo Chen ◽  
Zifeng Hua ◽  
Jun Wang ◽  
Shilin Cao ◽  
...  

Cellulose paper has been functionalized by nanoparticles such as Ag nanoparticles, TiO2, and BaTiO3 for versatile applications including supercapacitor, sensors, photoactivity, and packaging. Herein, zinc oxide (ZnO) nanosheet-modified paper (ZnO@paper) with excellent antibacterial properties was fabricated via a mild ZnCl2-urea eutectic solvent. In this proposed method, cellulose fibers as the raw material for ZnO@paper were treated by an aqueous solvent of ZnCl2-urea; the crystalline region was destroyed and [ZnCl]+-based cations were adsorbed on the surface of cellulose fibers, facilitating more ZnO growth on ZnO@paper. A flexible paper-based triboelectric nanogenerator (P-TENG) was made of ZnO@paper paired with a PTFE film. The P-TENG presents high triboelectric output performance and antibacterial activity. For instance, the output voltage and current of the P-TENG were 77 V and 0.17 μA, respectively. ZnO@paper showed excellent antibacterial activity against E. coli and S. aureus, suggesting that a P-TENG can restrain and kill the bacteria during the working process. The results also indicated that ZnO could improve the surface roughness of cellulose paper, enhancing the output performance of a flexible P-TENG. In addition, the potential application of a P-TENG-based pressure sensor for determining human motion information was also reported. This study not only produced a high-performance P-TENG for fabricating green and sustainable electronics, but also provides an effective and novel method for ZnO@paper preparation.



Sign in / Sign up

Export Citation Format

Share Document