cu bonding
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 58)

H-INDEX

23
(FIVE YEARS 3)

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1864
Author(s):  
Jia-Juen Ong ◽  
Dinh-Phuc Tran ◽  
Shih-Chi Yang ◽  
Kai-Cheng Shie ◽  
Chih Chen

Cu-Cu bonding has the potential to break through the extreme boundary of scaling down chips’ I/Os into the sub-micrometer scale. In this study, we investigated the effect of 2-step bonding on the shear strength and electrical resistance of Cu-Cu microbumps using highly <111>-oriented nanotwinned Cu (nt-Cu). Alignment and bonding were achieved at 10 s in the first step, and a post-annealing process was further conducted to enhance its bonding strength. Results show that bonding strength was enhanced by 2–3 times after a post-annealing step. We found 50% of ductile fractures among 4548 post-annealed microbumps in one chip, while the rate was less than 20% for the as-bonded counterparts. During the post-annealing, interfacial grain growth and recrystallization occurred, and the bonding interface was eliminated. Ductile fracture in the form of zig-zag grain boundary was found at the original bonding interface, thus resulting in an increase in bonding strength of the microbumps.


2021 ◽  
Author(s):  
Jinhee Bae ◽  
Sun Ho Park ◽  
Dohyun Moon ◽  
Nak Cheon Jeong

Abstract Hydrogen bond (H-bond) of water molecules confined in nanopores is of particular interest because it is expected to exhibit chemical features different from bulk water molecules due to its interaction with the wall lining the pores. Herein, we show a crystalline behavior of hydrogen-bonded water molecules residing in the nanocages of a paddlewheel metal-organic framework, providing in situ and ex situ synchrotron single-crystal X-ray diffraction and Raman spectroscopy studies. The crystalline H-bond is demonstrated by proving the vibrational chain connectivity arising between hydrogen bonding and paddlewheel Cu−Cu bonding in sequentially connected Cu–Cu⋅⋅⋅⋅⋅coordinating H2O⋅⋅⋅⋅⋅H-bonded H2O and proving the spatial ordering of H-bonded water molecules at room temperature, where they are anticipated to be disordered with a high degree of freedom in their molecular motions. Additionally, we show a substantial distortion of the paddlewheel Cu2+ centers that arises simultaneously with water coordination. Also, we suggest the dynamic coordination bond character of the H-bond of the confined water molecules, by which an H-bond transitions to a coordination bond at the Cu2+ center instantaneously after dissociating a previously coordinated water molecule.


2021 ◽  
Vol 11 (20) ◽  
pp. 9444
Author(s):  
Yoonho Kim ◽  
Seungmin Park ◽  
Sarah Eunkyung Kim

Low-temperature Cu-Cu bonding technology plays a key role in high-density and high-performance 3D interconnects. Despite the advantages of good electrical and thermal conductivity and the potential for fine pitch patterns, Cu bonding is vulnerable to oxidation and the high temperature of the bonding process. In this study, chip-level Cu bonding using an Ag nanofilm at 150 °C and 180 °C was studied in air, and the effect of the Ag nanofilm was investigated. A 15-nm Ag nanofilm prevented Cu oxidation prior to the Cu bonding process in air. In the bonding process, Cu diffused rapidly to the bonding interface and pure Cu-Cu bonding occurred. However, some Ag was observed at the bonding interface due to the short bonding time of 30 min in the absence of annealing. The shear strength of the Cu/Ag-Ag/Cu bonding interface was measured to be about 23.27 MPa, with some Ag remaining at the interface. This study demonstrated the good bonding quality of Cu bonding using an Ag nanofilm at 150 °C.


Nano Energy ◽  
2021 ◽  
Vol 86 ◽  
pp. 106126
Author(s):  
Ruey-Chi Wang ◽  
Yu-Cheng Lin ◽  
Po-Tsang Chen ◽  
Hsiu-Cheng Chen ◽  
Wan-Ting Chiu

2021 ◽  
Author(s):  
Byungho Park ◽  
Duy le Han ◽  
Mikkiko Saito ◽  
Jun Mizuno ◽  
Hiroshi Nishikawa

Abstract Nanoparticle sintering is considered a promising alternative bonding method to Pb- based soldering for the attachment of components in high-temperature electronic devices. However, the technology still poses certain challenges, such as difficulty controlling joint thickness and the generation of voids owing to solvent evaporation. In this study, a solid-state (solvent-free), nanoporous-Cu (NPC) bonding method was examined. The effect of bonding temperatures (200–400°C) and atmospheres (N2 or formic acid) on the shear strength of joints formed between NPC sheets and bare Cu disks were investigated by scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. It was shown that the bondability of NPC under an N2 atmosphere is closely related to the oxide layer formed on its surface that impairs the diffusion of Cu atoms between the NPC and Cu substrate. Furthermore, the coarsening of the NPC microstructure under a formic acid atmosphere at ≥ 350°C owing to the rapid diffusion of Cu atoms and accompanying plastic deformation induced by surface stress enhances the shear strength of the resulting NPC/Cu joint. The shear strength of NPC/Cu joints formed under a formic acid atmosphere increased from 14.1 to 35.9 MPa with increasing bonding temperature. Based on the results of the investigation, a mechanism was proposed to explain the superiority of the Cu–Cu joints achieved using this method.


Sign in / Sign up

Export Citation Format

Share Document