scholarly journals The PTRHD1 Mutation in Intellectual Disability

2021 ◽  
Vol 24 (10) ◽  
pp. 747-751
Author(s):  
Sara Cheraghi ◽  
Sahar Moghbelinejad ◽  
Hossein Najmabadi ◽  
Kimia Kahrizi ◽  
Reza Najafipour

Background: Intellectual disability (ID) is a heterogonous disorder with complex etiology. The frequency of autosomal recessive inheritance defects was elevated in a consanguineous family. Methods: In this study, high-throughput DNA sequencing was performed in an Iranian consanguineous family with two affected individuals to find potential causative variants. Whole-exome sequencing was carried out on the proband and Sanger sequencing was implemented for validation of the likely causative variant in the family members. Results: A novel homozygous missense mutation (p.Arg122Trp) was detected in the PTRHD1 gene. Conclusion: PTRHD1 has been recently introduced as a candidate ID and Parkinsonism causing gene. Our findings are in agreement with the clinical spectrum of PTRHD1 mutations; however, our affected individuals suffer from ID manifestations.

2020 ◽  
Author(s):  
Pengfei Liang ◽  
Fengping Chen ◽  
Shujuan Wang ◽  
Qiong Li ◽  
Wei Li ◽  
...  

Abstract Background: Hereditary non-syndromic hearing loss (NSHL) has a high genetic heterogeneity with >152 genes identified as associated molecular causes. The present study aimed to detect the possible damaging variants of the deaf probands from six unrelated Chinese families.Methods: After excluding the mutations in the most common genes, GJB2 and SLC26A4, 12 probands with prelingual deafness and autosomal recessive inheritance were evaluated by whole-exome sequencing (WES). All the candidate variants were verified by Sanger sequencing in all patients and their parents.Results: Biallelic mutations were identified in all deaf patients. Among these six families, 10 potentially causative mutations, including 3 reported and 7 novel mutations, in 3 different deafness-associated autosomal recessive (DFNB) genes (MYO15A, COL11A2, and CDH23) were identified. The mutations in MYO15A were frequent with 7/10 candidate variants. Sanger sequencing confirmed that these mutations segregated with the hearing loss of each family.Conclusions: Next-generation sequencing (NGS) approach becomes more cost-effective and efficient when analyzing large-scale genes compared to the conventional polymerase chain reaction-based Sanger sequencing, which is often used to screen common deafness-related genes. The current findings further extend the mutation spectrum of hearing loss in the Chinese population, which has a positive significance for genetic counseling.


1994 ◽  
Vol 52 (2) ◽  
pp. 170-173 ◽  
Author(s):  
M. Rita Passos-Bueno ◽  
Suely K. Marie ◽  
Mario Monteiro ◽  
Isaac Neustein ◽  
Martin R. Whittle ◽  
...  

2021 ◽  
pp. mcs.a006130
Author(s):  
Ryan J Patrick ◽  
Jill M Weimer ◽  
Laura Davis-Keppen ◽  
Megan L Landsverk

Pathogenic variants in CKAP2L have previously been reported in Filippi Syndrome (FS), a rare autosomal recessive, craniodigital syndrome characterized by microcephaly, syndactyly, short stature, intellectual disability, and dysmorphic facial features. To date, fewer than ten patients with pathogenic variants in CKAP2L associated with FS have been reported. All of the previously reported probands have presumed loss-of-function variants (frameshift, canonical splice site, starting methionine) and all but one have been homozygous for a pathogenic variant. Here we describe two brothers who presented with microcephaly, micrognathia, syndactyly, dysmorphic features, and intellectual disability. Whole exome sequencing of the family identified a missense variant, c.2066G>A (p.Arg689His), in trans with a frameshift variant, c.1169_1173del (p.Ile390LysfsTer4), in CKAP2L. To our knowledge, these are the first patients with FS to be reported with a missense variant in CKAP2L and only the second family to be reported with two variants in trans.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ghazanfar Ali ◽  
Sadia ◽  
Jia Nee Foo ◽  
Abdul Nasir ◽  
Chu-Hua Chang ◽  
...  

Background. Bardet-Biedl syndrome (BBS) is a rare autosomal recessive inherited disorder with distinctive clinical feature such as obesity, degeneration of retina, polydactyly, and renal abnormalities. The study was aimed at finding out the disease-causing variant/s in patients exhibiting clinical features of BBS. Methods. The identification of disease-causing variant was done by using whole exome sequencing on Illumina HiSeq 4000 platform involving the SeqCap EZ Exome v3 kit (Roche NimbleGen). The identified variant was further validated by Sanger sequencing. Results. WES revealed a novel homozygous missense mutation (NM_031885: c.443A>T:p.N148I) in exon 3 of the BBS2 gene. Sanger sequencing confirmed this variant as homozygous in both affected subjects and heterozygous in obligate parents, demonstrating autosomal recessive inheritance pattern. To the best of our knowledge, this variant was not present in literature and all publically available databases. The candidate variant is predicted to be pathogenic by a set of in-silico softwares. Conclusion. Clinical and genetic spectrum of BBS and BBS-like disorders is not completely defined in the Pakistani as well as in Kashmiri population. Therefore, more comprehensive genetic studies are required to gain insights into genotype-phenotype associations to facilitate carrier screening and genetic counseling of families with such disorders.


2021 ◽  
Author(s):  
Pengfei Liang ◽  
Fengping Chen ◽  
Shujuan Wang ◽  
Qiong Li ◽  
Wei Li ◽  
...  

Abstract Background: Hereditary non-syndromic hearing loss (NSHL) has a high genetic heterogeneity with >152 genes identified as associated molecular causes. The present study aimed to detect the possible damaging variants of the deaf probands from six unrelated Chinese families.Methods: After excluding the mutations in the most common genes, GJB2 and SLC26A4, 12 probands with prelingual deafness and autosomal recessive inheritance were evaluated by whole-exome sequencing (WES). All the candidate variants were verified by Sanger sequencing in all patients and their parents.Results:Biallelic mutations were identified in all deaf patients. Among these six families, 10 potentially causative mutations, including 3 reported and 7 novel mutations, in 3 different deafness-associated autosomal recessive (DFNB) genes (MYO15A, COL11A2, and CDH23) were identified. The mutations in MYO15A were frequent with 7/10 candidate variants. Sanger sequencing confirmed that these mutations segregated with the hearing loss of each family.Conclusions:Next-generation sequencing (NGS) approach becomes more cost-effective and efficient when analyzing large-scale genes compared to the conventional polymerase chain reaction-based Sanger sequencing, which is often used to screen common deafness-related genes. The current findings further extend the mutation spectrum of hearing loss in the Chinese population, which has a positive significance for genetic counseling.


2020 ◽  
pp. 1-2
Author(s):  
Amarbir Singh Boparai ◽  
BK Brar ◽  
Narvinderjeet Kaur

Primary cutaneous amyloidosis is a chronic, progressive disorder of skin, because of the amyloid deposition in the skin with no systemic involvement. Amyloid cutis dyschromica (ACD) is considered a rare variant of primary cutaneous amyloidosis with around 50 cases reported so far. Most cases are reported from Asia, majority having the family history. Autosomal recessive inheritance in GPNMB encoding glycoprotein non metastatic gene B has been reported in many cases with few case reports of semidominat inheritance. It is usually asymptomatic condition as opposed to other types of primary cutaneous amyloidosis like macular or lichenoid variant which are associated with moderate to severe pruritus and photosensitvity. Chief complaint in majority of cases is cosmetic concern only. In view of the very few cases reported from India, we hereby report the case of a 28 years old female having similar dyspigmentation in one sibling.


2006 ◽  
Vol 37 (03) ◽  
Author(s):  
U Gaiser ◽  
J Neuberger ◽  
E Regel ◽  
R Emmert ◽  
M Ries

1970 ◽  
Vol 63 (4) ◽  
pp. 618-624 ◽  
Author(s):  
Y. Kumahara ◽  
Y. Okada ◽  
K. Miyai ◽  
H. Iwatsubo

ABSTRACT A 25-year-old male dwarf and his sister, a 31-year-old woman were investigated. Their respective heights were 114 and 97 cm with proportional statures. Their bone ages were that found in the adult subject. Thyroid functions and metyrapone test were normal and the total urinary gonadotrophin was determined in both cases. HGH secretion was not stimulated by insulin-induced hypoglycaemia, arginine infusion or exercise. Their parents and six other siblings were normal in height. The two patients were therefore assumed to be suffering from an isolated growth hormone deficiency with autosomal recessive inheritance.


2019 ◽  
Vol 19 (9) ◽  
pp. 683-687 ◽  
Author(s):  
Tawfiq Froukh ◽  
Ammar Hawwari

Background: Keratoconus (KC) is usually bilateral, noninflammatory progressive corneal ectasia in which the cornea becomes progressively thin and conical. Despite the strong evidence of genetic contribution in KC, the etiology of KC is not understood in most cases. Methods: In this study, we used whole-exome sequencing to identify the genetic cause of KC in two sibs in a consanguineous family. The Homozygous frameshift variant NM_001253826.1:c.60delC;p.Leu21Cysfs*6 was identified in the gene Nacetylgalactosaminyltransferase 14 (GALNT14). The variant does not exist in all public databases neither in our internal exome database. Moreover, no database harbours homozygous loss of function variants in the candidate gene. Result: GALNT14 catalyses the initial reaction in O-linked oligosaccharide biosynthesis, the transfer of an N-acetyl-D- galactosamine residue to a serine or threonine residue on target proteins especially Mucins. Conclusion: As alterations of mucin’s glycosylation are linked to a number of eye diseases, we demonstrate in this study an association between the truncated protein GALNT14 and KC.


1991 ◽  
Vol 28 (4) ◽  
pp. 277-279 ◽  
Author(s):  
J C de Almeida ◽  
D F Reis ◽  
J Llerena Junior ◽  
J Barbosa Neto ◽  
R L Pontes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document