Characterization of argillic alteration and K/Ar dating of illite at the Mercur Gold Mine, Utah : further evidence for a Mesozoic age of gold mineralization

1993 ◽  
2015 ◽  
Vol 89 (6) ◽  
pp. 1914-1925 ◽  
Author(s):  
ENDUT Zakaria ◽  
NG Tham Fatt ◽  
ABDUL AZIZ Jasmi Hafiz ◽  
MEFFRE Sebastien ◽  
MAKOUNDI Charles

Agric ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 75-88 ◽  
Author(s):  
Erny Yuniarti ◽  
Ida F Dalmacio ◽  
Erlinda S Paterno

The purposes of the study was to isolate, to characterize, and to identify rhizobacteria from plant rhizosphere growing in gold and copper mine. The isolation of rhizobacteria used N-free semisolid agar media, TSA, and SLP plus heavy metals (HMs), namely Pb, Cd, and or Cu. Isolated rhizobacteria were subsequently characterized for resistance to higher level of Pb, Cd, Cu in SLP media. Cultural and morphological characterization of rhizobacteria were conducted for cell morphology, motility, Gram staining, and biofilm formation. The rhizobacteria identification used sequence analysis of the 16S RNA gene fragments. The results showed that the majority of rhizobacterial from Cu mine site (66.7% of 21 isolates) were resistant to Cu (72150 ppm) while the majority of rhizobacteria from gold mine site (77.8% of 18 isolates) were sensitive to 72 ppm Cu. Majority of Cu in the soil was insoluble as granules attaching to gravel so that rhizobacteria of Cu mine site have been exposed and adapted to available Cu. This fact, explaining that the rhizobacteria’s MIC value was lower than the total Cu level in the soil. Three HMs-resistant rhizobacter (PbSM 2.1, MGR 334, and CuNFbM 4.1) formed biofilms, which was as one of the resistance mechanism to HMs. This research informed that HM contaminated-soil is better source for obtaining HM resistant rhizobacteria than HM uncontaminated-soil. The use four isolation media produce rhizobacteria which was more diverse than rhizobacteria from each isolation medium. Further characterization needs to be done to obtain HM resistant-rhizobacteria which can be used as biofertilizers and phytoremediation agent.


2003 ◽  
Author(s):  
Andrew Kong ◽  
Forpu Njikam ◽  
Clifton Townes ◽  
G. Van Ness Burbach ◽  
Guoqing Tang

2015 ◽  
Vol 45 (1) ◽  
pp. 35-49 ◽  
Author(s):  
Bruno de Siqueira Costa ◽  
Carlos Humberto da Silva ◽  
Ana Cláudia Dantas da Costa

The structural study of rocks in the district of Cangas showed the identification of three phases of deformation for the Cuiabá Group in this region. The main structure oriented 120/27 is related to the first phase of deformation defined by a slate cleavage, parallel to the bedding and to the axial plane of recumbent folds. In the early stages of this phase a family of quartz veins (V1) was generated, arranged parallel to the structures of this phase of deformation, being all almost deformed. The second phase of deformation formed a crenulation cleavage (Sn+1), axial plane of opened to gentle and asymmetric normal folds, with preferential orientation 110/68. The third phase of deformation is represented by a set of centimetric to decametric scale fractures and faults with metric slip that cut all previous structures, with orientations 35/82. Related to this phase of deformation occurs a second family of quartz veins (V2), which fills the fractures related to Dn+2 and may or may not be carrying gold mineralization.


Sign in / Sign up

Export Citation Format

Share Document