scholarly journals Compressive strength Prediction recycled aggregate incorporated concrete using Adaptive Neuro-Fuzzy System and Multiple Linear Regression

Author(s):  
Funso Falade ◽  
Taim Iqbal

Compressive strength of concrete, renowned as one of the most substantial mechanical properties of concrete and key factors for the quality assurance of concrete. In the present study, two different data-driven models, i.e., Adaptive Neuro-Fuzzy Inference System (ANFIS), and Multiple Linear Regression (MLR) were used to predict the 28 days compressive strength of recycled aggregate concrete (RAC). 16 different input parameters, including both dimensional and non-dimensional parameters, were used for predicting the 28 days compressive strength of concrete. The present study established that estimation of 28 days compressive strength of recycled aggregate concrete was performed better by ANFIS in comparison to MLR. Besides, the performance of data-driven models with and without the non-dimensional parameters is explored. It was observed that the data-driven models show better accuracy when the non-dimensional parameters were used as additional input parameters. Furthermore, the effect of each non-dimensional parameter on the performance of each data-driven model is investigated and 28 days compressive strength of concrete is examined.

2021 ◽  
Vol 11 (2) ◽  
pp. 127-136
Author(s):  
Sadaf Noshin ◽  
M. Adil Khan ◽  
M. Salman ◽  
M. Shahzad Aslam ◽  
Haseeb Ahmad ◽  
...  

Abstract In construction industry, demolished construction waste is recently used as reprocessed aggregate to produce environmentally friendly concrete which is a good substitute to normal crush due to increased demand of ecological growth and conservation benefits. Though, the properties of recycled aggregate concrete are smallest as compared to concrete produced from natural aggregate and these properties can be enhanced by adding some materials having cementitious properties. Rice husk ash (RHA) is used as partial replacement of cement in recycled aggregate concrete to improve the properties as well as to conserve the natural resources. The elementary purpose of this investigation is to determine the compressive strength of concrete by the replacement of cement with different percentages of rice husk ash such as 0%, 7.5%, 10%, 12.5%, 15%, and 17.5% respectively with different curing conditions. For the experimental program approximate 198 cylinders (18 for rapid curing, 90 for normal water curing and 90 for acid curing) are casted with the mix proportion of 1:2:4 and water to cement ratio of 0.50 whereas curing is done at the ages of 3,7,14,21 and 28 days. Various experiments are performed on fresh and hardened concrete to determine the effects of rice husk ash on recycled aggregate concrete with different curing conditions. Linear regression analysis is carried out to determine the compressive strength of concrete. It is pragmatic from the slump test results that the workability of recycled aggregate concrete is decreased by increasing the quantity of rice husk ash. This reduction in slump is due to high water absorption of recycled aggregates and rice husk ash. Further, the compressive strength of recycled aggregate concrete with normal and acid curing is decreased by increasing the percentages of rice husk ash. It is also observed that at 28- days of normal water curing for mix M1,M2,M3,M4,M5 and M6 the compressive strength is increased by 0.96%, 2.74% 1.45%,4.50%,4.23% and 4.22% respectively as compared to the compressive strength values at 28 days of acid water curing. Therefore, it is concluded that recycled aggregate concrete with 10 to 12% of rice husk ash is suitable for properties of concrete. The acid water curing has negative impacts on hardened properties of concrete as it reduced the compressive strength of concrete as compared to normal water curing.


2012 ◽  
Vol 450-451 ◽  
pp. 1261-1264
Author(s):  
Xiao Ling Liu ◽  
Ting Lei

Early compressive strength of recycled aggregate concrete is important for the project. Age of recycled aggregate concrete is 3d、7d、14d、21d、28d, in order to study the relation of the early compressive strength with the replacement rate of recycled aggregate, and study Linear regression of 28d compressive strength with cement-water ratio. In the base of result, formula is given about the early compressive strength of recycled aggregate concrete and proved in good.


2012 ◽  
Vol 253-255 ◽  
pp. 546-549 ◽  
Author(s):  
Yoon Seok Shin ◽  
Gwang Hee Kim

Today, efforts are underway in a number of areas to conserve the environment and protect natural resource. In the construction industry, many researchers have studied the development of new concrete using recycled aggregate (RA). This research proposes a multiple regression model (MRM) for predicting the compressive strength of recycled aggregate concrete (RAC). The compressive strength data of 85 specimens of RAC strengths were used for constructing and evaluating the prediction model. The average error rate of the constructed MRM evaluation is 7.18 percent. This result will be useful for predicting the compressive strength of RAC using multiple regression analysis.


Sign in / Sign up

Export Citation Format

Share Document