scholarly journals OPTIMASI PENJADWALAN WAKTU KERJA MENGGUNAKAN INTEGER PROGRAMMING

2019 ◽  
Vol 7 (2) ◽  
pp. 51-55
Author(s):  
Windra Tahir ◽  
Djihad Wungguli ◽  
Muhamad Rezky Friesta Payu

Scheduling workers is one of the problems faced by every company. The regulations set by the company, the availability of the number of workers, and the division of labor are the determining factors in the scheduling system. This worker scheduling problem can be modeled as an Integer Programming problem. Integer Programming is an optimization technique with linear objective functions, linear constraint functions, and integer variables. This paper discusses the formulation of worker scheduling problems in the form of Integer Programming with workers in companies engaged in the production of Crumb Rubber with the objective function of minimizing the number of workers employed. The next model is implemented using the help of LINGO 11.0 software. The implementation results show that the model is able to produce optimal employee schedules.

Author(s):  
Leila Younsi-Abbaci ◽  
Mustapha Moulaï

In this paper, we consider a Multi-Objective Stochastic Interval-Valued Linear Fractional Integer Programming problem (MOSIVLFIP). We especially deal with a multi-objective stochastic fractional problem involving an inequality type of constraints, where all quantities on the right side are log-normal random variables, and the objective functions coefficients are fractional intervals. The proposed solving procedure is divided in three steps. In the first one, the probabilistic constraints are converted into deterministic ones by using the chance constrained programming technique. Then, the second step consists of transforming the studied problem objectives on an optimization problem with an interval-valued objective functions. Finally, by introducing the concept of weighted sum method, the equivalent converted problem obtained from the two first steps is transformed into a single objective deterministic fractional problem. The effectiveness of the proposed procedure is illustrated through a numerical example.


Aerospace ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 140
Author(s):  
Duarte P. Pereira ◽  
Isaias L. R. Gomes ◽  
Rui Melicio ◽  
Victor M. F. Mendes

This paper addresses a support information system for the planning of aircraft maintenance teams, assisting maintenance managers in delivering an aircraft on time. The developed planning of aircraft maintenance teams is a computer application based on a mathematical programming problem written as a minimization one. The initial decision variables are positive integer variables specifying the allocation of available technicians by skills to maintenance teams. The objective function is a nonlinear function balancing the time spent and costs incurred with aircraft fleet maintenance. The data involve technicians’ skills, hours of work to perform maintenance tasks, costs related to facilities, and the aircraft downtime cost. The realism of this planning entails random possibilities associated with maintenance workload data, and the inference by a procedure of Monte Carlo simulation provides a proper set of workloads, instead of going through all the possibilities. The based formalization is a nonlinear integer programming problem, converted into an equivalent pure linear integer programming problem, using a transformation from initial positive integer variables to Boolean ones. A case study addresses the use of this support information system to plan a team for aircraft maintenance of three lines under the uncertainty of workloads, and a discussion of results shows the serviceableness of the proposed support information system.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sizhuo Yu ◽  
Tahar Nabil

Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. Consequently, previous applications of quantum annealing to real-life use cases have focused on problems that are either native QUBO or close to native QUBO. By contrast, in this paper we propose to tackle inequality constraints and non-quadratic terms. We demonstrate how to handle them with a realistic use case-a bus charging scheduling problem. First, we reformulate the original integer programming problem into a QUBO with the penalty method and directly solve it on a D-Wave machine. In a second approach, we dualize the problem by performing the Hubbard-Stratonovich transformation. The dual problem is solved indirectly by combining quantum annealing and adaptive classical gradient-descent optimizer. Whereas the penalty method is severely limited by the connectivity of the realistic device, we show experimentally that the indirect approach is able to solve problems of a larger size, offering thus a better scaling. Hence, the implementation of the Hubbard-Stratonovich transformation carried out in this paper on a scheduling use case suggests that this approach could be investigated further and applied to a variety of real-life integer programming problems under multiple constraints to lower the cost of mapping to QUBO, a key step towards the near-term practical application of quantum computing.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Godfrey Chagwiza ◽  
Chipo Chivuraise ◽  
Christopher T. Gadzirayi

In this paper, a feed ration problem is presented as a mixed integer programming problem. An attempt to find the optimal quantities of Moringa oleifera inclusion into the poultry feed ration was done and the problem was solved using the Bat algorithm and the Cplex solver. The study used findings of previous research to investigate the effects of Moringa oleifera inclusion in poultry feed ration. The results show that the farmer is likely to gain US$0.89 more if Moringa oleifera is included in the feed ration. Results also show superiority of the Bat algorithm in terms of execution time and number of iterations required to find the optimum solution as compared with the results obtained by the Cplex solver. Results revealed that there is a significant economic benefit of Moringa oleifera inclusion into the poultry feed ration.


2006 ◽  
Vol 05 (03) ◽  
pp. 531-543 ◽  
Author(s):  
FENGMEI YANG ◽  
GUOWEI HUA ◽  
HIROSHI INOUE ◽  
JIANMING SHI

This paper deals with two bi-objective models arising from competitive location problems. The first model simultaneously intends to maximize market share and to minimize cost. The second one aims to maximize both profit and the profit margin. We study some of the related properties of the models, examine relations between the models and a single objective parametric integer programming problem, and then show how both bi-objective location problems can be solved through the use of a single objective parametric integer program. Based on this, we propose two methods of obtaining a set of efficient solutions to the problems of fundamental approach. Finally, a numerical example is presented to illustrate the solution techniques.


2021 ◽  
Vol 8 (4) ◽  
pp. 11-33
Author(s):  
Amir Gharehgozli ◽  
Orkideh Gharehgozli ◽  
Kunpeng Li

Automated deep-sea container terminals are the main hubs to move millions of containers in today's global supply chains. Terminal operators often decouple the landside and waterside operations by stacking containers in stacks perpendicular to the quay. Traditionally, a single automated stacking cranes (ASC) is deployed at each stack to handle containers. A recent trend is to use new configurations with more than one crane to improve efficiency. A variety of new configurations have been implemented, such as twin, double, and triple ASCs. In this paper, the authors explore and review the mixed integer programming models that have been developed for the stacking operations of these new configurations. They further discuss how these models can be extended to contemplate diverse operational constraints including precedence constraints, interference constraints, and other objective functions.


Sign in / Sign up

Export Citation Format

Share Document