mixed integer programming problem
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
pp. 465-486
Author(s):  
Qiang Wang ◽  
Hai-Lin Liu

In this chapter, the authors propose a joint BS sleeping strategy, resource allocation, and energy procurement scheme to maximize the profit of the network operators and minimize the carbon emission. Then, a joint optimization problem is formulated, which is a mixed-integer programming problem. To solve it, they adopt the bi-velocity discrete particle swarm optimization (BVDPSO) algorithm to optimize the BS sleeping strategy. When the BS sleeping strategy is fixed, the authors propose an optimal algorithm based on Lagrange dual domain method to optimize the power allocation, subcarrier assignment, and energy procurement. Numerical results illustrate the effectiveness of the proposed scheme and algorithm.


Author(s):  
Yinping Gao ◽  
Daofang Chang ◽  
Jun Yuan ◽  
Chengji Liang

With the rapid growth of containers and scarce of land, the underground container logistics system (UCLS) presents a logical alternative for container terminals to better protect the environment and relieve traffic pressure. The operating efficiency of container terminals is one of the competitive edges over other terminals, which requires UCLS to be well integrated with the handling process of the storage yard. In UCLS, yard trucks (YTs) serve different handling points dynamically instead of one fixed handling point, and yard cranes (YCs) perform loading and unloading simultaneously. To minimize the total time of handling all containers in UCLS, the mixed integer programming problem is described and solved using an adaptive genetic algorithm (AGA). The convergence speed and accuracy of AGA are demonstrated by comparison with conventional genetic algorithm (GA). Additionally, AGA and CPLEX are compared with different scale cases. Experimental results show that the proposed algorithm is superior to CPLEX in resulted solutions and calculation time. A sensitivity analysis is provided to obtain reasonable numbers of YTs for scheduling between handling points and the storage yard in UCLS.


2021 ◽  
Vol 70 ◽  
pp. 597-630
Author(s):  
Alex Mattenet ◽  
Ian Davidson ◽  
Siegfried Nijssen ◽  
Pierre Schaus

Block modeling has been used extensively in many domains including social science, spatial temporal data analysis and even medical imaging. Original formulations of the problem modeled it as a mixed integer programming problem, but were not scalable. Subsequent work relaxed the discrete optimization requirement, and showed that adding constraints is not straightforward in existing approaches. In this work, we present a new approach based on constraint programming, allowing discrete optimization of block modeling in a manner that is not only scalable, but also allows the easy incorporation of constraints. We introduce a new constraint filtering algorithm that outperforms earlier approaches, in both constrained and unconstrained settings, for an exhaustive search and for a type of local search called Large Neighborhood Search. We show its use in the analysis of real datasets. Finally, we show an application of the CP framework for model selection using the Minimum Description Length principle.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Qing Ma ◽  
Yanjun Wang

<p style='text-indent:20px;'>In this paper, we propose a distributionally robust chance-constrained SVM model with <inline-formula><tex-math id="M1">\begin{document}$ \ell_2 $\end{document}</tex-math></inline-formula>-Wasserstein ambiguity. We present equivalent formulations of distributionally robust chance constraints based on <inline-formula><tex-math id="M2">\begin{document}$ \ell_2 $\end{document}</tex-math></inline-formula>-Wasserstein ambiguity. In terms of this method, the distributionally robust chance-constrained SVM model can be transformed into a solvable linear 0-1 mixed integer programming problem when the <inline-formula><tex-math id="M3">\begin{document}$ \ell_2 $\end{document}</tex-math></inline-formula>-Wasserstein distance is discrete form. The DRCC-SVM model could be transformed into a tractable 0-1 mixed-integer SOCP programming problem for the continuous case. Finally, numerical experiments are given to illustrate the effectiveness and feasibility of our model.</p>


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Ritu Arora ◽  
Kavita Gupta

Multi-choice programming problems arise due to diverse needs of people. In this paper, multi-choice optimisation is applied to bilevel transportation problem. This problem deals with transportation at both the levels, upper as well as lower. There are multiple choices for demand and supply parameters. The multi-choice parameters at the respective levels are converted into polynomials which transmute the defined problem into a mixed integer programming problem. The objective of the paper is to determine a solution methodology for the transformed problem. The significance of the formulated model is exhibited through an example by applying it to a hotel industry. The fuzzy programing approach is employed to obtain the satisfactory solution for the decision makers at the two levels. A comparative analysis is presented in the paper by solving bilevel multi-choice transportation problem with goal programming mode as well as by the linear transformation technique proposed in the paper by Khalil et al. The example is solved using computing software.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 299 ◽  
Author(s):  
Kai Xu ◽  
Quanjun Yin

Recent research has found situations where the identification of agent goals could be purposefully controlled, either by changing the underlying environment to make it easier, or exploiting it during agent planning to delay the opponent’s goal recognition. The paper tries to answer the following questions: what kinds of actions contain less information and more uncertainty about the agent’s real goal, and how to describe this uncertainty; what is the best way to control the process of goal identification. Our contribution is the introduction of a new measure we call relative goal uncertainty (rgu) with which we assess the goal-related information that each action contains. The rgu is a relative value associated with each action and represents the goal uncertainty quantified by information entropy after the action is taken compared to other executable ones in each state. After that, we show how goal vagueness could be controlled either for one side or for both confronting sides, and formulate this goal identification control problem as a mixed-integer programming problem. Empirical evaluation shows the effectiveness of the proposed solution in controlling goal identification process.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Martha-Selene Casas-Ramírez ◽  
José-Fernando Camacho-Vallejo ◽  
Rosa G. González-Ramírez ◽  
José-Antonio Marmolejo-Saucedo ◽  
José-Manuel Velarde-Cantú

This paper addresses a biobjective production-distribution planning problem. The problem is formulated as a mixed integer programming problem with two objectives. The objectives are to minimize the total costs and to balance the total workload of the supply chain, which consist of plants and depots, considering that it represents a company vertically integrated. In order to solve the model, we propose an adapted biobjective GRASP to obtain an approximation of the Pareto front. To evaluate the performance of the proposed algorithm, numerical experimentations are conducted over a set of instances used for similar problems. Results indicate that the proposed GRASP obtains a relatively small number of nondominated solutions for each tested instance in very short computational time. The approximated Pareto fronts are discontinuous and nonconvex. Moreover, the solutions clearly show the compromise between both objective functions.


Author(s):  
Qiang Wang ◽  
Hai-Lin Liu

In this chapter, the authors propose a joint BS sleeping strategy, resource allocation, and energy procurement scheme to maximize the profit of the network operators and minimize the carbon emission. Then, a joint optimization problem is formulated, which is a mixed-integer programming problem. To solve it, they adopt the bi-velocity discrete particle swarm optimization (BVDPSO) algorithm to optimize the BS sleeping strategy. When the BS sleeping strategy is fixed, the authors propose an optimal algorithm based on Lagrange dual domain method to optimize the power allocation, subcarrier assignment, and energy procurement. Numerical results illustrate the effectiveness of the proposed scheme and algorithm.


Author(s):  
Beibei Xiong ◽  
Yongli Li ◽  
Ernesto D.R. Santibanez Gonzalez ◽  
Malin Song

Purpose The purpose of this paper is to measure Chinese industries’ eco-efficiency during 2006-2013. The Chinese industry attained rapid achievement in recent decades, but meanwhile, overconsumption of energy and environmental pollution have become serious problems. To solve these problems, many research studies used the data envelopment analysis (DEA) to measure the Chinese industry’s eco-efficiency. However, because the target set by these works is usually the furthest one for a province to be efficient, it may hardly be accepted by any province. Design/methodology/approach This paper builds a new “closest target method” based on an additive DEA model considering the undesirable outputs. This method is a mixed-integer programming problem which can measure the ecological efficiency of provinces and more importantly guide the province to perform efficiently with minimum effort. Findings The results show that the eco-efficiency of Chinese provinces increased at the average level, but the deviations remained at a larger value. Compared to the “furthest” target methods, the targets by the approach proposed by this study are more acceptable for a province to improve its performance on both economy and environment counts. Originality/value This study is the first attempt to introduce the closest targets concept to measure the eco-efficiency and set the target for each provincial industry in China.


Sign in / Sign up

Export Citation Format

Share Document