Stress-strain state of arbitrary shells with account for thermoelectric impact based on refined theory

2020 ◽  
Vol 12 (3) ◽  
pp. 110-117
Author(s):  
Valery Firsanov ◽  
Le Hung Nguyen
2020 ◽  
Vol 82 (1) ◽  
pp. 32-42
Author(s):  
Val.V. Firsanov ◽  
Q.H. Doan ◽  
N.D. Tran

A variant of the refined theory on calculation of the stress-strain state of circular plates with symmetrically various thicknesses according to an arbitrary law in the radial direction was presented. Equations of the plate state were established by using the three-dimensional elasticity theory. The required displacements were approximately calculated according to upright direction to the middle plane by polynomials with two degrees higher than in the classical Kirchhoff - Love theory. The differential equation at equilibrium in displacements with various coefficients was obtained by using means of the Lagrange variational principle. The direct integration of the equilibrium equations in the three-dimensional elasticity theory was used to determine the transverse normal and shear stresses. Of an isotropic circular plate with changing in thickness by using the analyzing Fourier chain, the obtained differential equilibrium equations in displacements with variable coefficients containing supplement components and taking into account of the effect of thickness on the stress-strain state of the plate. Examples of calculating the stress state of a circular plate with a thickness varying according to linear and parabolic laws under the action of a uniformly distributed load were considered. The limited difference method was employed to solve the boundary value problem. Comparison results of the refined and classical theories were investigated. It is demonstrated that the study on the stress state in the zones of its distortion (compounds, local loading zones, etc.) should use a refined theory, since the additional corresponding stresses of the “boundary layer” type are of the same order with the values of the main (internal) stress state. This is important to increase the reliability of strength calculations of such elements of aircraft-rocket structures as the power housings of aircraft, their various transition zones and connections, as well as objects in various engineering industries.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Sign in / Sign up

Export Citation Format

Share Document