The effect of the wall heat capacity on the temperature stratification and pressure rise during natural convection of hydrogen vapor in a vertical cylindrical vessel

Trudy MAI ◽  
2021 ◽  
pp. 2-2
Author(s):  
Anatoly Gorodnov ◽  
Igor Laptev
1980 ◽  
Vol 102 (4) ◽  
pp. 636-639 ◽  
Author(s):  
J. R. Parsons ◽  
J. C. Mulligan

A study of the onset of transient natural convection from a suddenly heated, horizontal cylinder of finite diameter is presented. The termination of the initial conductive and “locally” conuectiue heat transfer regime which precedes the onset of global natural convection is treated as a thermal stability phenomenon. An analysis is presented wherein the effects of finite cylinder diameter, cylinder heat capacity, and cylinder thermal conductivity are included in calculations of the convective delay time. A simple experimental apparatus is described and data presented. The thermal stability analysis is confirmed experimentally and data is presented which indicates localized natural convection prior to global motion.


Author(s):  
Douglas Stamps ◽  
Edward Cooper ◽  
Ryan Egbert ◽  
Steve Heerdink ◽  
Valerie Stringer

Experiments were conducted to determine the pressure rise that results from either the combustion of a localized gas volume or the expansion of a pressurized gas volume adjacent to an inert gas in a closed vessel. The experiments consisted of either pressurized air or the combustion of stoichiometric and fuel-lean hydrogen–air mixtures compressing an inert gas. The pressure rise in the inert gas was measured as a function of either the volume fraction or the initial pressure of the expanding gas. Helium, nitrogen, air and carbon dioxide were tested to explore the effect of inert gas heat capacity on the pressure rise. The final pressure of the inert gas increased with the volume fraction and initial pressure of the expanding gas, and was influenced to a lesser extent by the heat capacity of the inert gas. A model was assessed using the experimental data, and the theoretical results were consistent with the observed trends. This model and other published models were assessed and compared using prior data for localized gas combustion surrounded by an inert gas and the partial combustion of homogeneous methane–air mixtures.


Author(s):  
Titan C. Paul ◽  
A. K. M. M. Morshed ◽  
Elise B. Fox ◽  
Ann E. Visser ◽  
Nicholas J. Bridges ◽  
...  

A systematic natural convection heat transfer experiment has been carried out of nanoparticle enhanced ionic liquids (NEILs) in rectangular enclosures (lengthxwidthxheight, 50×50×50mm and 50×50×75mm) heated from below condition. In the present experiment NEIL was made of N-butyl-N-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl} imide, ([C4mpyrr][NTf2]) ionic liquid with 0.5% (weight%) Al2O3 nanoparticles. In addition to characterize the natural convection behavior of NEIL, thermophysical properties such as thermal conductivity, heat capacity, and viscosity were also measured. The result shows that the thermal conductivity of NEIL enhanced ∼3% from the base ionic liquid (IL), heat capacity enhanced ∼12% over the measured temperature range. The natural convection experimental result shows consistent for two different enclosures based on the degrading natural convection heat transfer rate over the measured Rayleigh number range. Possible reasons of the degradation of natural convection heat transfer may be the relative change of the thermophysical properties of NEIL compare to the base ionic liquid.


2014 ◽  
Vol 763 ◽  
pp. 352-368 ◽  
Author(s):  
Tae Hattori ◽  
John C. Patterson ◽  
Chengwang Lei

AbstractThis study considers the natural convection flow in a water body subjected to heating by solar radiation. The investigation into this type of natural convection flow has been motivated by the fact that it is known to play a crucial role in the daytime heat and mass transfer in shallow regions of natural water reservoirs and lakes, with a resultant impact on biological activity. An analytical solution for temperature in such an internally heated system shows that the temperature stratification consists of an upper stable stratification and a lower unstable stratification. One of the important consequences of such a nonlinear temperature stratification is the limitation of the mixing driven by rising thermal plumes with the penetration length scale of the plumes determining the lower mixed layer thickness. A theoretical analysis conducted in the present study suggests that in relatively deep waters, the lower mixed layer thickness is equal to the attenuation length of the radiation, which has important implications for water quality, including the transport of pollutants and nutrients in the water body. Scalings are also obtained for the quasi-steady boundary layer. The theoretical analysis is validated against numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document