Pressure loss in combustion chamber fuel system of the natural gas running gas turbine engine

2020 ◽  
Vol 27 (2) ◽  
pp. 157-168
Author(s):  
Andrey Baklanov
2021 ◽  
Vol 14 (01) ◽  
pp. 66-76
Author(s):  
Noval Dwi Kurnianto ◽  
Wira Gauthama ◽  
Zulham Hidayat

Rancang bangun mesin turbin gas dimulai dengan mengidentifikasi beberapa komponen yang dibutuhkan dalam membangun sebuah mesin turbin gas. Turbocharger yang terdiri dari kompresor dan turbin sebagai penyusun utama komponen ini diambil untuk dijadikan Kompresor dan turbin  mesin turbin gas yang juga merupakan unsur utama dalam sebuah mesin turbin gas. Agar sebuah mesin turbin gas dapat beroperasi maka perlu dirancang beberapa system pendukung seperti Oil System, Fuel System, Ignation System, Combustion Chamber dan beberapa system yang lain. Pada perancangan ini, penulis mendapat bagian dalam perancangan Sistem pelumas (Oil System) dimana tantangan yang dihadapi adalah mendapatkan jenis oil yang tepat untuk mesin turbin gas yang akan dibangun. Adapun  rumusan masalah dalam perancangan system pelumas ini antara lain bagaimana menentukan viskositas pelumas yang digunakan, menghitung critical pressure bearing, menghitung jumlah pelumas yang digunakan, menghitung head pompa dan menghitung kapasitas reservoir yang digunakan. Output akhir yang dihasilkan dari perancangan ini adalah  suplai oli yang mampu untuk melumasi shaft bearing pada turbocharger sehingga tidak terjadi overheating yang menyebabkan keausan serta metal to metal contact. Dari hasil perhitungan, didapatkan tekanan oli sebesar 37 psi yang diperlukan untuk melumasi shaft bearing pada turbocharger. Dan dihasilkan pembakaran yang continuous.


2019 ◽  
Vol 62 (3) ◽  
pp. 528-528
Author(s):  
A. I. Sulaiman ◽  
B. G. Mingazov ◽  
Yu. B. Aleksandrov ◽  
T. D. Nguyen

Author(s):  
Peter Therkelsen ◽  
Tavis Werts ◽  
Vincent McDonell ◽  
Scott Samuelsen

A commercially available natural gas fueled gas turbine engine was operated on hydrogen. Three sets of fuel injectors were developed to facilitate stable operation while generating differing levels of fuel/air premixing. One set was designed to produce near uniform mixing while the others have differing degrees of non-uniformity. The emissions performance of the engine over its full range of loads is characterized for each of the injector sets. In addition, the performance is also assessed for the set with near uniform mixing as operated on natural gas. The results show that improved mixing and lower equivalence ratio decreases NO emission levels as expected. However, even with nearly perfect premixing, it is found that the engine, when operated on hydrogen, produces a higher amount of NO than when operated with natural gas. Much of this attributed to the higher equivalence ratios that the engine operates on when firing hydrogen. However, even at the lowest equivalence ratios run at low power conditions, higher NO was observed. Analysis of the potential NO formation effects of residence time, kinetic pathways of NO production via NNH, and the kinetics of the dilute combustion strategy used are evaluated. While no one mechanism appears to explain the reasons for the higher NO, it is concluded that each may be contributing to the higher NO emissions observed with hydrogen. In the present configuration with the commercial control system operating normally, it is evident that system level effects are also contributing to the observed NO emission differences between hydrogen and natural gas.


2015 ◽  
Vol 58 (2) ◽  
pp. 205-209 ◽  
Author(s):  
A. I. Gur’yanov ◽  
O. A. Evdokimov ◽  
Sh. A. Piralishvili ◽  
S. V. Veretennikov ◽  
R. E. Kirichenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document