scholarly journals Flexible Manufacturing System and its feasibility in context of Manufacturing Industries

Author(s):  
A K Madan ◽  

Highly automated machine cell which is based on the principle of Group technology, comprising a group of processing work station for the production is referred to as Flexible Manufacturing System (FMS), where different processes like material handling, storage system, operation, inspection, etc., are interconnected by the automatic control unit. The concept of FMS (system 24) was first introduced in the mid-1960s to form a system that can operate 16 hours a day without any human attendant. The reason behind selecting this area for research is that there are problems like more lead time, inefficient utilization of machines, more space requirement in a machine shop, and high inventory level in the current manufacturing industry. All these problems can be solved by introducing automation in a manufacturing system, which can be done through FMS. FMS provides better resource utilization, high-quality control, low-cost product, a high rate of production, reduced direct labor requirement, and high labor productivity. Operational issues related to FMS faced by industries are machine loading, scheduling and dispatching, part routing, tool management, and part grouping so there is much scope of future development of FMS if all these issues are resolved.

2012 ◽  
Vol 576 ◽  
pp. 714-717
Author(s):  
Mohammad Iqbal ◽  
Muhammad Ridwan Andi Purnomo ◽  
Muhammad Ammar Bin Mohd Imra ◽  
Mohamed Konneh ◽  
A.N. Mustafizul Karim

Material handling is one of major components in Flexible Manufacturing System (FMS). Any improvement of material handling capability is to affect the performance of the whole system. This paper discusses the simulation study on the effect of part arrival rate and dispatching rules to the average waiting time and production rate of the FMS. The facilities of the system were modeled into simulation environment by using Arena Simulation Software. The production parameters such as machine processing times, part transportation speed and type of products were put into the model to represent the behaviors of the real system. Two rules have been considered in the study, i. e. first come first served (FCFS), and shortest processing time (SPT). Average waiting time and productivity were taken into account as performance measures of the system. The result of the study showed that SPT rule gives shorter average waiting time and higher productivity. Based on this result, the SPT rules would be used to control part transporter in order to have a better performance of the FMS.


Author(s):  
Mangey Ram ◽  
Nupur Goyal

Manufacturing systems are increasingly becoming automated and complex in nature. Highly reliable and flexible manufacturing systems (FMSs) are the necessity of manufacturing industries to fulfill the increasing customized demands. Worldwide, FMSs are used in industries to attain high productivity in production environments with rapidly and continuously changing manufactured goods structures and demands. Reliability prediction plays a very significant role in system design in the manufacturing industry, and two crucial issues in the prediction of system reliability are failures of equipment and system configuration. This novel work presents a stochastic model to analyze the performance of an FMS through its reliability characteristics, in the concern of its equipment. To improve the reliability of FMS, determine the sensitivity of the reliability measures of FMS. FMS consists of many components such as machine tools like CNC, automatic handling and material storage, controller and robot for serving load. The designed system is studied by using the Markov process, supplementary variable technique, Laplace transformation, coverage factor and Gumbel–Hougaard family copula to obtain various reliability measures. For some realistic approach, particular cases and graphical illustrations are also obtained.


Author(s):  
Saif Ullah Iqbal ◽  
C. B. Yeo ◽  
Umar Nirmal

The current works deals with the design and development of an Automated Storage and Retrieval System (ASRS) machine for Flexible Manufacturing System (FMS). The work involved investigating ASRS machine features and operating procedures, evaluating related hardware, software and communication modules for the machine. The work explored on the different options of hardware and software modules offered in the current market and further selected the suitable one for the ASRS machine development. Several design considerations and the limitations faced during the process of the project development and implementation are given. Arduino was used as the coding system for the Arduino UNO board while stainless steel 305 and aluminium was used as the main frame in fabricating the ASRS machine. Lastly, a final working prototype of a fully-developed ASRS machine with dimensions of: 80cm by 73cm by 94cm (length by width by height) is presented.


Author(s):  
Angella Thomas ◽  
David A. Guerra-Zubiaga ◽  
John Cohran

Manufacturing system integration is an important industrial and research activity to explore Next Generation Automated Systems (NGAS). Manufacturing systems has been incorporating flexible, reconfigurable, smart and intelligent features. Advances in technology and trends such Industry 4.0 will revolutionize the manufacturing industry tremendously. Important subjects in this direction are Digital Twins, Internet of Things, and Collaborative Robots among others, are integral to continue the progression to create smart and reliable manufacturing processes. This paper aims to implement a method applying these concepts in a Flexible Manufacturing System (FMS) by providing a broad view of NGAS.


2013 ◽  
Vol 329 ◽  
pp. 172-175
Author(s):  
Jin Feng Wang ◽  
Guang Feng Zhang ◽  
Xian Zhang Feng

For the rigid automatic line, although its production efficiency is high, but the flexible is less in the machining process, the machine and the assembly line need be shut down to adjust or replace for machine tools, jigs, tools, and tooling equipment, etc. When the work pieces for the machining is changed. It caused a heavy workload, wasting a lot of time. Flexible Manufacturing Systems consisted of unified control system, material handling system and a set of digital control processing equipment; it is the automation machinery manufacturing system to adapt the processing object transform. It has become one of the important means of manufacturing industry to obtain the advantages of market competitiveness. This paper gives the composition, algorithm and application of learning system concept, composition, and classification, characteristics of the flexible manufacturing system, the development overview and its application are induced in this paper.


Sign in / Sign up

Export Citation Format

Share Document