Stochastic Design Exploration with Rework of Flexible Manufacturing System Under Copula-Coverage Approach

Author(s):  
Mangey Ram ◽  
Nupur Goyal

Manufacturing systems are increasingly becoming automated and complex in nature. Highly reliable and flexible manufacturing systems (FMSs) are the necessity of manufacturing industries to fulfill the increasing customized demands. Worldwide, FMSs are used in industries to attain high productivity in production environments with rapidly and continuously changing manufactured goods structures and demands. Reliability prediction plays a very significant role in system design in the manufacturing industry, and two crucial issues in the prediction of system reliability are failures of equipment and system configuration. This novel work presents a stochastic model to analyze the performance of an FMS through its reliability characteristics, in the concern of its equipment. To improve the reliability of FMS, determine the sensitivity of the reliability measures of FMS. FMS consists of many components such as machine tools like CNC, automatic handling and material storage, controller and robot for serving load. The designed system is studied by using the Markov process, supplementary variable technique, Laplace transformation, coverage factor and Gumbel–Hougaard family copula to obtain various reliability measures. For some realistic approach, particular cases and graphical illustrations are also obtained.

Author(s):  
Angella Thomas ◽  
David A. Guerra-Zubiaga ◽  
John Cohran

Manufacturing system integration is an important industrial and research activity to explore Next Generation Automated Systems (NGAS). Manufacturing systems has been incorporating flexible, reconfigurable, smart and intelligent features. Advances in technology and trends such Industry 4.0 will revolutionize the manufacturing industry tremendously. Important subjects in this direction are Digital Twins, Internet of Things, and Collaborative Robots among others, are integral to continue the progression to create smart and reliable manufacturing processes. This paper aims to implement a method applying these concepts in a Flexible Manufacturing System (FMS) by providing a broad view of NGAS.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401775070 ◽  
Author(s):  
Muhammad Bashir ◽  
Ding Liu ◽  
Murat Uzam ◽  
Naiqi Wu ◽  
Abdulrahman Al-Ahmari ◽  
...  

This article reports a transition-based control technique to prevent deadlocks for flexible manufacturing systems that can be modeled with a generalized class of Petri nets. The proposed method utilizes the structural properties of the Petri net model to avoid the computation of its reachability graph which in general leads to the state explosion problem. Three algorithms are developed. The first and second algorithms aim to compute first-met and n-met uncontrolled transitions, respectively, in an iterative manner until all the n-met uncontrolled transitions are found in the plant net model. The third algorithm is used to design n-transition controllers iteratively. The iteration terminates when all the transitions in the set of uncontrolled transitions are processed. The addition of the n-transition controllers to the plant net model is to make the n-met uncontrolled transitions controlled. The transition controllers are capable of enforcing liveness to the plant net model with all its reachable markings being retained in the controlled system, which ensures the full utilization of resources and provides the high productivity of a flexible manufacturing system.


SIMULATION ◽  
2019 ◽  
Vol 95 (11) ◽  
pp. 1085-1096 ◽  
Author(s):  
Abdessalem Jerbi ◽  
Achraf Ammar ◽  
Mohamed Krid ◽  
Bashir Salah

The Taguchi method is widely used in the field of manufacturing systems performance simulation and improvement. On the other hand, Arena/OptQuest is one of the most efficient contemporary simulation/optimization software tools. The objective of this paper is to evaluate and compare these two tools applied to a flexible manufacturing system performance optimization context, based on simulation. The principal purpose of this comparison is to determine their performances based on the quality of the obtained results and the gain in the simulation effort. The results of the comparison, applied to a flexible manufacturing system mean flow time optimization, show that the Arena/OptQuest optimization platform outperforms the Taguchi optimization method. Indeed, the Arena/OptQuest permits one, through the lowest experimental effort, to reliably minimize the mean flow time of the studied flexible manufacturing system more than the Taguchi method.


2019 ◽  
Vol 18 (03) ◽  
pp. 469-485
Author(s):  
Surinder Kumar ◽  
Tilak Raj ◽  
Rajesh Attri

The excessive competition in domestic as well as international market has forced the manufacturing organizations to adopt advance manufacturing systems such as flexible manufacturing system (FMS). Adoption of these systems has resulted into increased productivity and better quality products. In order to continue their presence in cut-throat competitive environment, the manufacturing organizations are exploring the flexibility options of FMS. In order to analyze the flexibility options of FMS, an endeavor has been performed to identify the critical factors (CFs) that are pertinent to the flexibility of FMS. These CFs have a reflective impact in designing of FMS. After ascertaining these CFs, interpretive structural modeling (ISM) and MICMAC approach have been used to establish the structural relationships among these CFs to develop a hierarchical model. The verdicts of this exploration may assist managers to analyze the flexibility options of FMS in their organizations.


2013 ◽  
Vol 378 ◽  
pp. 367-374 ◽  
Author(s):  
Andrey A. Kutin ◽  
Mikhail Turkin

This paper introduces an analytical method for evaluating the performance of closed loop manufacturing systems with unreliable machines and finite buffers. The method involves transforming an arbitrary loop into one without thresholds and then evaluating the transformed loop using a new set of decomposition equations. It is more accurate than existing methods and is effective for a wider range of cases. The convergence reliability, and speed of the method are also discussed. In addition, observations are made on the behavior of closed loop production systems under various conditions. Finally, the method is used in a case study to design a flexible manufacturing system for production of aerospace parts.


2014 ◽  
Vol 536-537 ◽  
pp. 1654-1657 ◽  
Author(s):  
Paul Ciprian Patic ◽  
Lucia Pascale ◽  
Gabriela Măntescu

In this paper one proposed to exemplify a modern solution of an automatic control of industrial production lines. The necessity to align at the requirements of industrial competition has led to a degree of automation of increasingly advanced that the human intervention into the processes is minimal. A high productivity means lower flow interruptions as manufacturing, so the systems which control these lines must operate without errors. This can be done only by testing control programs and monitoring automation systems and, also, through simulate the manufacturing process.


2013 ◽  
Vol 329 ◽  
pp. 172-175
Author(s):  
Jin Feng Wang ◽  
Guang Feng Zhang ◽  
Xian Zhang Feng

For the rigid automatic line, although its production efficiency is high, but the flexible is less in the machining process, the machine and the assembly line need be shut down to adjust or replace for machine tools, jigs, tools, and tooling equipment, etc. When the work pieces for the machining is changed. It caused a heavy workload, wasting a lot of time. Flexible Manufacturing Systems consisted of unified control system, material handling system and a set of digital control processing equipment; it is the automation machinery manufacturing system to adapt the processing object transform. It has become one of the important means of manufacturing industry to obtain the advantages of market competitiveness. This paper gives the composition, algorithm and application of learning system concept, composition, and classification, characteristics of the flexible manufacturing system, the development overview and its application are induced in this paper.


2013 ◽  
Vol 581 ◽  
pp. 527-532
Author(s):  
Peter Košťál ◽  
Daynier Rolando Delgado Sobrino

Flexible Manufacturing Systems provide a fast reaction possibility to the changes in production conditions. As production conditions change, other changes in the final product like changes of the product variants, or other unpredictable events may be also expected. For achieving a quick responsibility of production, it is necessary to leave the traditional form of production process planning. Nowadays most of the products are designed by using the CAx software. The product design 3D model contains not only the geometrical data of product, but may contain a part of the process plan and technological data as well.


2015 ◽  
Vol 809-810 ◽  
pp. 1426-1431
Author(s):  
Elena Iuliana Gingu Boteanu ◽  
Miron Zapciu ◽  
Cristina Mohora

The paper presents a theme of research through the analysis of flows' modelling and simulation in a flexible manufacturing system. It is studied the simulation with discrete events of a real manufacturing line with the software Delmia Quest. The objectives of this paper are to modelling and simulate the manufacturing system and to choose the properly probability distributions of a cycle time of each machine from this layout. A comparison of three distributions is presented and SCL implemented program will automatically display the values resulting from the manufacturing system simulation.


2013 ◽  
Vol 404 ◽  
pp. 631-634 ◽  
Author(s):  
Lehel Csokmai ◽  
Ovidiu Moldovan ◽  
Ioan Constantin Tarca ◽  
Radu Tarca

Production systems must be flexible and endowed with techniques and tools allowing an automatic recovery of errors. And so, the subject of error recovery in flexible manufacturing system is always an open issue. The objective of this work consists in proposing a new type of software framework for error troubleshooting in a flexible manufacturing system that is perceived as an Intelligent Space (iSpace). Our framework system is designed to solve the failures in the functioning of the FMS and to generate self-training from previous experience.


Sign in / Sign up

Export Citation Format

Share Document