scholarly journals Models and Systems for the control of two-phase processes in microfluidics

2021 ◽  
Vol 54 (384) ◽  
pp. MISC1-MISC2
Author(s):  
Fabiana Cairone

Microfluidics is a novel and promising scientific field research whose progresses are aimed to the development of the Lab-On-Chip (LOC) systems. The strong point of the microfluidics is the ability to miniaturize and integrate one or several laboratory functions on the same device, to have a portable and user-friendly instrument. Most applications require accurate measures and control within the microfluidic channels. In this thesis, the optical techniques were adopted to monitor, sensing and control the processes, leading to the research area of optofluidics that are based on the integration of fluidics and optics. To reduce the cost, to develop these devices and, at the same time, to have the optics and fluidics parts integrate in the same device, the 3D Printing technology based on the Poly(dimethyl-siloxane) (PDMS) is proposed. All these aspects were addressed considering the two-phase flow (named slug) generated by the interaction of two immiscible fluids, a very common condition in bio-chemical applications. The methodological aspects were discussed in the first part of the thesis, starting from the extraction of parameters for the flow characterization, to their use for the flows real-time modelling and control schemes development; the second part investigates aspects faced for the realization of micro-optical flow detector by using the 3D Printing technology.

Author(s):  
Mohd Nazri Ahmad ◽  
Ahmad Afiq Tarmeze ◽  
Amir Hamzah Abdul Rasib

2020 ◽  
Vol 14 (7) ◽  
pp. 470
Author(s):  
Jarosław Kotliński ◽  
Karol Osowski ◽  
Zbigniew Kęsy ◽  
Andrzej Kęsy

2021 ◽  
pp. 2102649
Author(s):  
Sourav Chaule ◽  
Jongha Hwang ◽  
Seong‐Ji Ha ◽  
Jihun Kang ◽  
Jong‐Chul Yoon ◽  
...  

2021 ◽  
Vol 596 ◽  
pp. 120201
Author(s):  
Mengsuo Cui ◽  
Hao Pan ◽  
Dongyang Fang ◽  
Haowei Sun ◽  
Sen Qiao ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1106
Author(s):  
Alejandro Cortés ◽  
Xoan F. Sánchez-Romate ◽  
Alberto Jiménez-Suárez ◽  
Mónica Campo ◽  
Ali Esmaeili ◽  
...  

Electromechanical sensing devices, based on resins doped with carbon nanotubes, were developed by digital light processing (DLP) 3D printing technology in order to increase design freedom and identify new future and innovative applications. The analysis of electromechanical properties was carried out on specific sensors manufactured by DLP 3D printing technology with complex geometries: a spring, a three-column device and a footstep-sensing platform based on the three-column device. All of them show a great sensitivity of the measured electrical resistance to the applied load and high cyclic reproducibility, demonstrating their versatility and applicability to be implemented in numerous items in our daily lives or in industrial devices. Different types of carbon nanotubes—single-walled, double-walled and multi-walled CNTs (SWCNTs, DWCNTs, MWCNTs)—were used to evaluate the effect of their morphology on electrical and electromechanical performance. SWCNT- and DWCNT-doped nanocomposites presented a higher Tg compared with MWCNT-doped nanocomposites due to a lower UV light shielding effect. This phenomenon also justifies the decrease of nanocomposite Tg with the increase of CNT content in every case. The electromechanical analysis reveals that SWCNT- and DWCNT-doped nanocomposites show a higher electromechanical performance than nanocomposites doped with MWCNTs, with a slight increment of strain sensitivity in tensile conditions, but also a significant strain sensitivity gain at bending conditions.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20507-20518
Author(s):  
Petr Panuška ◽  
Zuzana Nejedlá ◽  
Jiří Smejkal ◽  
Petr Aubrecht ◽  
Michaela Liegertová ◽  
...  

A novel design of 3D printed zebrafish millifluidic system for embryonic long-term cultivation and toxicity screening has been developed. The chip unit provides 24 cultivation chambers and a selective individual embryo removal functionality.


Sign in / Sign up

Export Citation Format

Share Document