scholarly journals Adaptive temperature controller for plastic extrusion process

Author(s):  
Jesús GUERRERO ◽  
Julio GONZÁLEZ ◽  
Martin CHIMAL

In this paper, an adaptive temperature controller for the plastic extrusion process is designed. The proposed controller aims to solve the set-point regulation problem and the temperature trajectory tracking of a plastic extrusion process. The controller is an adaptive version of the First Sliding Mode Control which is robust towards parametric uncertainties and external disturbances. Also, the finite time convergence is demonstrated by Lyapunov arguments. Finally, the effectiveness of the proposed controller under several scenarios is demonstrated by computer simulations.

Author(s):  
Qijia Yao

Space manipulator is considered as one of the most promising technologies for future space activities owing to its important role in various on-orbit serving missions. In this study, a robust finite-time tracking control method is proposed for the rapid and accurate trajectory tracking control of an attitude-controlled free-flying space manipulator in the presence of parametric uncertainties and external disturbances. First, a baseline finite-time tracking controller is designed to track the desired position of the space manipulator based on the homogeneous method. Then, a finite-time disturbance observer is designed to accurately estimate the lumped uncertainties. Finally, a robust finite-time tracking controller is developed by integrating the baseline finite-time tracking controller with the finite-time disturbance observer. Rigorous theoretical analysis for the global finite-time stability of the whole closed-loop system is provided. The proposed robust finite-time tracking controller has a relatively simple structure and can guarantee the position and velocity tracking errors converge to zero in finite time even subject to lumped uncertainties. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance under the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Dan-xu Zhang ◽  
Yang-wang Fang ◽  
Peng-fei Yang ◽  
You-li Wu ◽  
Tong-xin Liu

This paper proposed a finite time convergence global sliding mode control scheme for the second-order multiple models control system. Firstly, the global sliding surface without reaching law for a single model control system is designed and the tracking error finite time convergence and global stability are proved. Secondly, we generalize the above scheme to the second-order multimodel control system and obtain the global sliding mode control law. Then, the convergent and stable performances of the closed-loop control system with multimodel controllers are proved. Finally, a simulation example shows that the proposed control scheme is more effective and useful compared with the traditional sliding mode control scheme.


2010 ◽  
Vol 92 (7-8) ◽  
pp. 257-268 ◽  
Author(s):  
Yu-Sheng Lu ◽  
Chien-Wei Chiu ◽  
Jian-Shiang Chen

Sign in / Sign up

Export Citation Format

Share Document