Examining the Impact and Influencing Channels of Emission Trading Pilot Markets in China

Author(s):  
Qiong Wu ◽  
Kanittha Tambunlertchai ◽  
Pongsa Pornchaiwiseskul

The global warming has become a serious issue in the world since the 1980s. The targets for the first commitment period of the Kyoto Protocol cover emissions of the six main greenhouse gasses (GHGs). China is the world's largest CO2 emitter and coal consumer and was responsible for 27.3 percent of the global total CO2 emission and 50.6 percent of the global total coal consumption in 2016 (BP, 2017). As China plays an important role in the global climate change, China has set goals to improve its environmental efficiency and performance. In 2011, the Chinese government for the first time announced an intent to establish carbon emission trading market in China. Eight regional emission trading schemes have been operating since 2013 (seven pilot markets during the 12th Five Year Plan period and one pilot market during the 13th Five Year Plan period) including provinces of Guangdong, Hubei, and Fujian, and cities of Beijing, Tianjin, Shanghai, Shenzhen, and Chongqing. The goal of these regional emission trading pilot markets is to help the government establish an efficient carbon emission trading scheme at national level. Some researchers have been focused on examining the impact of emission trading schemes in China using CGE model by constructing different scenarios and ex-ante analysis using data prior to emission trading pilot markets implementation. While this paper tries to conduct an ex-post analysis with data of 2005-2017 to evaluate the impact of emission trading pilot markets in China at provincial level using difference-in-difference (DID) model. By including both CO2 and SO2 as undesirable outputs to calculate Malmquist-Luenberger (ML) Index to measure green total factor productivity, this paper plans to evaluate the impact of carbon emission trading pilot markets in China via emission reduction, regional green development, synergy effect and influencing channels. This paper tries to answer the following research questions: (1) Do emission trading pilot markets reduce CO2 emission and increase regional green total factor productivity? (2) Is there any synergy effect from emission trading pilot markets? (3) What are the influencing channels of emission trading pilot markets? Keywords: Emission trading, CO2 emissions, Different-in-difference

Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 828 ◽  
Author(s):  
Weiwei Zhang ◽  
Linlin Liu

Carbon capture, utilization, and storage (CCUS) is one of the most effective technologies to reduce CO2 emissions and has attracted wide attention all over the world. This paper proposes a real option model to analyze the investment decisions of a coal-fired power plant on CCUS technologies under imperfect carbon emission trading schemes in China. Considering multiple uncertainties, which include carbon trading price volatility, carbon utilization revenue fluctuation, and changes in carbon transport and storage cost, the least squares Monte Carlo simulation method is used to solve the problems of path dependence. The research results show that the independent effects of carbon trading mechanisms on investment stimulation and emission reduction are limited. The utilization ratio of captured CO2 has significant impacts on the net present value and investment value of the CCUS project. Moreover, the investment threshold is highly sensitive to the utilization proportion of food grade CO2 with high purity. It is suggested that the Chinese government should take diverse measures simultaneously, including increasing grants for research and development of carbon utilization technologies, introducing policies to motivate investments in CCUS projects, and also improving the carbon emission trading scheme, to ensure the achievement of the carbon emission reduction target in China.


Author(s):  
Lei Wang ◽  
Yu Yan

In terms of the development of the manufacturing industry, the Chinese government has carried out environmental regulations and set up production standards for related industries. This is an environmentally-friendly and economic action, which is also in line with the requirements of building a green economy for China. Meanwhile, whether from the micro regulatory measures or the macro government policies, carbon emission is an inevitable problem in the study of environmental problems. This paper will explore the impact of environmental regulation on the green economy based on carbon emissions and study the optimal environment regulation intensity that relates to a direct carbon footprint under the maximum green economic benefits. A SBM-MALMQUIST model is established to measure the green total factor productivity according to 27 Chinese manufacturing industries through the MAXDEA software. It is found that the intensity of environmental regulation has a significant impact on green total factor productivity, and direct carbon footprint also exhibits a partial intermediary effect, participating in the mechanism that affects green total factor productivity. Combined with the industrial characteristics and the above research results, this paper puts forward the adjustment strategy of reasonable environmental regulation for the manufacturing industry, which conforms to the national policy guidance, and will be beneficial in promoting the economic development of the green manufacturing industry.


Author(s):  
Chen Wang ◽  
Qingyan Yang ◽  
Shufen Dai

In implementing carbon emission trading schemes (ETSs), the cost of carbon embedded in raw materials further complicates supplier selection and order allocation. Firms have to make decisions by comprehensively considering the cost and the important intangible performance of suppliers. This paper uses an analytic network process–integer programming (ANP–IP) model based on a multiple-criteria decision-making (MCDM) approach to solve the above issues by first evaluating and then optimizing them. The carbon embedded in components, which can be used to reflect the carbon competitiveness of a supplier, is integrated into the ANP–IP model. In addition, an international large-scale electronic equipment manufacturer in China is used to validate the model. Different scenarios involving different carbon prices are designed to analyze whether China’s current ETS drives firms to choose more low-carbon suppliers. The results show that current carbon constraints are not stringent enough to drive firms to select low-carbon suppliers. A more stringent ETS with a higher carbon price could facilitate the creation of a low-carbon supply chain. The analysis of the firm’s total cost and of the total cost composition indicates that the impact of a more stringent ETS on the firm results mainly from indirect costs instead of direct costs. The indirect cost is caused by the suppliers’ transfer of part of the low-carbon investment in the product, and arises from buying carbon permits with high carbon prices. Implications revealed by the model analysis are discussed to provide guidance to suppliers regarding the balance between soft competitiveness and low-carbon production capability and to provide guidance to the firm on how to cooperate with suppliers to achieve a mutually beneficial situation.


2021 ◽  
Author(s):  
Lin Aihua ◽  
Pier Paolo Miglietta ◽  
Pierluigi Toma

AbstractAs the highest carbon emission country in the world, it is particularly important to investigate the implementation effect of China’s carbon emission trading (CET) system. Because of the complexity to figure out the counterfactual effect when a single unit is treated, the counterfactual and causal effects of the CET system on the carbon emissions are seldom identified. In order to overcome the weakness that counterfactual effect is difficult to be verified and policy persistence is difficult to be estimated, Synthetic Control Method (SCM) and Regression Discontinuity (RD) are combined to better understand and evaluate the impact of CET system in China. Through the analysis, it is found that CET system is effective in China, but the effect is driven by economic development, energy consumption, FDI and other variables. Because of the differences in economic, geographical, technological and environmental conditions in various areas, each Chinese provincial government should formulate a targeted policy according to local conditions, ensuring an economic and environmentally sustainable growth in the future.


2021 ◽  
Vol 13 (10) ◽  
pp. 5664
Author(s):  
Qiong Wu ◽  
Kanittha Tambunlertchai ◽  
Pongsa Pornchaiwiseskul

As China has an important role in global climate change, the Chinese government has set goals to improve its environmental efficiency and performance and launched carbon emission trading pilot markets in 2013, aiming to reduce CO2 emissions. Based on panel data of 30 provinces from 2005 to 2017, this paper uses the difference-in-difference method to study the impact of China’s carbon emission trading pilot markets on carbon emissions and regional green development. The paper also explores possible influencing channels. The main conclusions are as follows: (1) China’s carbon emission trading policy has promoted a reduction in CO2 emissions and carbon emission intensity and has increased green development in the pilot areas. (2) The main path for China’s carbon emission trading policy to achieve carbon emission reduction and regional green development is to promote technology adoption. (3) China’s carbon emission trading policy achieves green development through synergistic SO2 emission reduction. The pilot carbon markets have reduced both the amount of SO2 emissions and SO2 emission intensity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wangzi Xu

As the country with the largest CO2 emissions in the world, the Chinese government has put forward clear goals of hitting peak carbon emissions by 2030 and carbon neutralization by 2060. Thus, China started piloting carbon emission trading in 2013, and in July 2021 China opened national carbon trading, which is the largest carbon market in the world (China Launches World, 2021). Therefore, it is very important for China to study the role and mechanism of carbon trading at present. Based on the quasi-natural experiment of China’s carbon market pilot, this paper uses panel data of 30 provinces in mainland China from 2008 to 2019 to conduct an empirical study on carbon emission reduction and the economic effects in China’s pilot provinces through a Time-varying Differences-in-Differences method model. The results show that the implementation of a carbon trading policy can significantly inhibit carbon emissions and promote economic growth. At the same time, this paper further analyzes the emission reduction mechanism of the carbon emissions trading policy through the intermediary effect test and finds that the policy mainly realizes carbon emission reduction by changing the energy consumption structure, promoting low-carbon innovation, and upgrading the industrial structure. In addition, innovative research has found the impact of a carbon price signal and marketization on the emission reduction effect of the carbon market. Finally, targeted suggestions are put forward.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yawei Qi ◽  
Wenxiang Peng ◽  
Ran Yan ◽  
Guangping Rao

China declared a long-term commitment at the United Nations General Assembly (UNGA) in 2020 to reduce CO2 emissions. This announcement has been described by Reuters as “the most important climate change commitment in years.” The allocation of China’s provincial CO2 emission quotas (hereafter referred to as quotas) is crucial for building a unified national carbon market, which is an important policy tool necessary to achieve carbon emissions reduction. In the present research, we used historical quota data of China’s carbon emission trading policy pilot areas from 2014 to 2017 to identify alternative features of corporate CO2 emissions and build a backpropagation neural network model (BP) to train the benchmark model. Later, we used the model to calculate the quotas for other regions, provided they implement the carbon emission trading policy. Finally, we added up the quotas to obtain the total national quota. Additionally, considering the perspective of carbon emission terminal, a new characteristic system of quota allocation was proposed in order to retrain BP including the following three aspects: enterprise production, household consumption, and regional environment. The results of the benchmark model and the new models were compared. This feature system not only builds a reasonable quota-related indicator framework but also perfectly matches China’s existing “bottom-up” total control quota approach. Compared with the previous literature, the present report proposes a quota allocation feature system closer to China’s policy and trains BP to obtain reasonable feature weights. The model is very important for the establishment of a unified national carbon emission trading market and the determination of regional quotas in China.


Sign in / Sign up

Export Citation Format

Share Document