scholarly journals The Impact and Influencing Path of the Pilot Carbon Emission Trading market——Evidence From China

2021 ◽  
Vol 9 ◽  
Author(s):  
Wangzi Xu

As the country with the largest CO2 emissions in the world, the Chinese government has put forward clear goals of hitting peak carbon emissions by 2030 and carbon neutralization by 2060. Thus, China started piloting carbon emission trading in 2013, and in July 2021 China opened national carbon trading, which is the largest carbon market in the world (China Launches World, 2021). Therefore, it is very important for China to study the role and mechanism of carbon trading at present. Based on the quasi-natural experiment of China’s carbon market pilot, this paper uses panel data of 30 provinces in mainland China from 2008 to 2019 to conduct an empirical study on carbon emission reduction and the economic effects in China’s pilot provinces through a Time-varying Differences-in-Differences method model. The results show that the implementation of a carbon trading policy can significantly inhibit carbon emissions and promote economic growth. At the same time, this paper further analyzes the emission reduction mechanism of the carbon emissions trading policy through the intermediary effect test and finds that the policy mainly realizes carbon emission reduction by changing the energy consumption structure, promoting low-carbon innovation, and upgrading the industrial structure. In addition, innovative research has found the impact of a carbon price signal and marketization on the emission reduction effect of the carbon market. Finally, targeted suggestions are put forward.

2019 ◽  
Vol 11 (5) ◽  
pp. 1465 ◽  
Author(s):  
Li Li ◽  
Di Liu ◽  
Jian Hou ◽  
Dandan Xu ◽  
Wenbo Chao

The negative effects of global warming are becoming more and more serious. The fundamental way to prevent global warming is by reducing carbon dioxide emissions. Achieving this has become a key concern for all countries. The logarithmic mean divisia index model was constructed to decompose the total carbon emission increment. Carbon finance effect was divided into green credit effect and carbon trading effect to analyze the impact of carbon finance on carbon emissions. The results showed that the total carbon emission reduction value caused by green credit effect from 2010 to 2016 in the Beijing-Tianjin-Hebei region was 66193.96 million tons, and the added value of carbon emission caused by carbon trading effect was 80266.68 million tons. There are regional differences in the effects of carbon finance on carbon emissions in these regions. It can be concluded that to a certain extent, green credit can reduce carbon emissions, and carbon trading can increase carbon emissions. Using the gradual expansion of carbon finance trading and market mechanism of carbon finance to solve the problem of carbon emission can improve the efficiency of carbon emission reduction.


2020 ◽  
Vol 12 (16) ◽  
pp. 6498 ◽  
Author(s):  
Fuquan Zhao ◽  
Feiqi Liu ◽  
Han Hao ◽  
Zongwei Liu

The Chinese government has made a commitment to control carbon emissions, and the deployment of renewable energy power generation is considered as an effective solution. In recent years, great effort has been exerted to support the development of renewable energy in China. While, due to fiscal pressures and changes in management policies, related subsidies are diminishing now and energy users are asked to pay for the cost. Regulations about carbon cap and renewable energy consumptions are issued to transfer the responsibility of consuming renewable energy and reducing carbon emissions to energy consumers. A national carbon trading system is set up in China and is under its growth stage. Therefore, this study lists the factors that should be considered by the energy users, analyzes the levelized cost of electricity generated by renewable energy in four cities in China, Beijing, Shanghai, Guangzhou, Wuhan, and compares the results with current carbon prices. Based on the research, under the current status, it is still more cost-efficient for enterprises to buy carbon credits than introduce renewable energies, and great differences among cities are shown due to different natural conditions. Besides, with diminishing subsidies and development of the carbon trading market, the carbon price will gradually reflect the actual value and carbon emission reduction costs will become an important part of enterprise expenditure. In the long term, enterprises should link more factors to carbon emissions, like social responsibility and brand image, instead of only the cost.


2019 ◽  
Vol 11 (16) ◽  
pp. 4387 ◽  
Author(s):  
Lin ◽  
Zhang ◽  
Wang ◽  
Yang ◽  
Shi ◽  
...  

The increasing demand for urban distribution increases the number of transportation vehicles which intensifies the congestion of urban traffic and leads to a lot of carbon emissions. This paper focuses on carbon emission reduction in urban distribution, taking perishable foods as the object. It carries out optimization analysis of urban distribution routes to explore the impact of low carbon policy on urban distribution routes planning. On the basis of analysis of the cost components and corresponding constraints of urban distribution, two optimization models of urban distribution routes with and without carbon emissions cost are constructed. Fuel quantity related to cost and carbon emissions in the model is calculated based on traffic speed, vehicle fuel quantity and passable time period of distribution. Then an improved algorithm which combines genetic algorithm and tabu search algorithm is designed to solve models. Moreover, an analysis of the influence of carbon tax price is also carried out. It is concluded that in the process of urban distribution based on the actual network information, path optimization considering the low carbon factor can effectively reduce the distribution process of CO2, and reduce the total cost of the enterprise and society, thus achieving greater social benefits at a lower cost. In addition, the government can encourage low-carbon distribution by rationally adjusting the price of carbon tax to achieve a higher social benefit.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 828 ◽  
Author(s):  
Weiwei Zhang ◽  
Linlin Liu

Carbon capture, utilization, and storage (CCUS) is one of the most effective technologies to reduce CO2 emissions and has attracted wide attention all over the world. This paper proposes a real option model to analyze the investment decisions of a coal-fired power plant on CCUS technologies under imperfect carbon emission trading schemes in China. Considering multiple uncertainties, which include carbon trading price volatility, carbon utilization revenue fluctuation, and changes in carbon transport and storage cost, the least squares Monte Carlo simulation method is used to solve the problems of path dependence. The research results show that the independent effects of carbon trading mechanisms on investment stimulation and emission reduction are limited. The utilization ratio of captured CO2 has significant impacts on the net present value and investment value of the CCUS project. Moreover, the investment threshold is highly sensitive to the utilization proportion of food grade CO2 with high purity. It is suggested that the Chinese government should take diverse measures simultaneously, including increasing grants for research and development of carbon utilization technologies, introducing policies to motivate investments in CCUS projects, and also improving the carbon emission trading scheme, to ensure the achievement of the carbon emission reduction target in China.


2020 ◽  
Vol 12 (19) ◽  
pp. 7843
Author(s):  
Lu Li ◽  
Jie Dong ◽  
Yan Song

Recently, the environmental and resource crisis caused by excessive energy consumption has aroused great concern worldwide. China is a major country of energy consumption and carbon emissions, and has attempted to build a carbon emission trading market to reduce carbon emissions. This practice helps to promote the carbon trading projects for both regional carbon emission reduction and sustainable development in the pilot areas, as well as having important theoretical and practical significance for the further improvement of carbon emission trading policies. In this study, we first used the difference-in-difference (DID) model to evaluate the impact of carbon emission trading on the carbon emission intensity of construction land (CEICL). The results showed that the carbon emission trading policy can significantly reduce CEICL in the pilot areas. Furthermore, we adopted the quantile regression model to explore the mechanism and acting path of carbon emission trading on CEICL. The results show that the increase in carbon trading volume (CTV) can effectively reduce the CEICL. However, a high carbon trading price (CTP) tends to reduce the suppressing effect of carbon emission trading on CEICL. Additionally, carbon emission trading also affects CEICL through the indirect acting paths of industrial structure and energy intensity. Finally, we propose to promote regional low-carbon development from the perspective of developing a carbon emission trading market nationwide, rationalizing the carbon quota and trading price mechanism, optimizing the regional industrial structure, and improving the energy consumption structure.


2020 ◽  
Vol 7 (5) ◽  
pp. 240-250
Author(s):  
Linshan Wang ◽  
Chuanming Liu ◽  
Xi Yang

Carbon emissions trading is one of the important ways to reduce carbon emissions by giving CO2 emission rights a commodity attribute that allows them to trade on the market and to reduce greenhouse gas emissions through the market mechanisms. Based on the inter-provincial panel data from 1997 to 2016, this paper constructs a basic theoretical analysis framework to analyze the carbon emission reduction effects of carbon trading policies, adopts PSM-DID to study the carbon emission reduction effects of carbon trading pilots. This study finds that: (1) The implementation of the carbon trading pilot can promote carbon emission reduction, but the pilot provinces and municipalities have different economic development levels, industrial structure and supporting measures adopted after the implementation of the carbon trading pilot policy, resulting in differences in carbon emission reduction effects between pilot provinces. (2) For the seller of carbon emission rights, carbon emission reduction is achieved through three effects of "market return-inducing", "technical innovation incentive" and "government support"; for the buyer, carbon emission reduction is achieved through three effects of "enterprise cost pressure", "process innovation motivation" and "market guiding". (4) The results of traditional PSM-DID further prove that the carbon trading pilot can significantly reduce CO2 emissions.


2021 ◽  
Vol 13 (21) ◽  
pp. 12137
Author(s):  
Xi Chen ◽  
Zhigang Chen

Dealing with the relationship between environment and economic development is the core issue of China’s sustainable development. At present, China’s economic transformation is urgent, and green finance is being widely concerned. This paper measured the development level of China’s green finance from the perspective of green credit, green securities, green investment, and green insurance. Then, it used a spatial dynamic panel model to empirically test the mechanism of the impact of green finance on carbon emissions with panel data of 30 Chinese provinces from 2005 to 2018. The following can be seen from the results: (1) The development of green finance contributes to carbon emission reduction. (2) The spatial spillover effect of green finance is significant. Specifically, the development of green finance can not only reduce the carbon emissions of the local region but also inhibit that of adjacent areas. (3) The development of green finance indirectly leads to a decrease in carbon emissions by reducing financing constraints and boosting green technology innovation. In order to stimulate the carbon emission reduction effect of green finance to a greater extent, we should further support the development of green finance, reduce the financing constraints of energy-saving and environmental-protection enterprises, and encourage the research and development of green innovative technologies.


2020 ◽  
Vol 194 ◽  
pp. 01010
Author(s):  
Erdong Zhao ◽  
Jianmin Chen ◽  
Chuxiang Chen ◽  
Mingsong Chen

In recent years, environmental problems caused by greenhouse gas emissions have attracted more and more attention. Under increasing cost pressure, energy enterprises have become one of the targets to control carbon emissions. Taking China Guodian Corporation as an example, it is of great significance to study the agility development of China’s energy enterprises under the carbon emission trading system.This paper uses content coding analysis method to explore the influencing factors of agility of energy-based enterprises in China and the specific degree of influence. Through research, it is found that corporate culture, leadership awareness and internal competition have a positive effect on the agility of energy-based enterprises. This study develops the relevant theories of energy-based enterprises from the perspective of agility and finds a key breakthrough for energy-based enterprises to cope with the pressure of carbon emission reduction and optimize their operations.


2021 ◽  
Vol 13 (10) ◽  
pp. 5664
Author(s):  
Qiong Wu ◽  
Kanittha Tambunlertchai ◽  
Pongsa Pornchaiwiseskul

As China has an important role in global climate change, the Chinese government has set goals to improve its environmental efficiency and performance and launched carbon emission trading pilot markets in 2013, aiming to reduce CO2 emissions. Based on panel data of 30 provinces from 2005 to 2017, this paper uses the difference-in-difference method to study the impact of China’s carbon emission trading pilot markets on carbon emissions and regional green development. The paper also explores possible influencing channels. The main conclusions are as follows: (1) China’s carbon emission trading policy has promoted a reduction in CO2 emissions and carbon emission intensity and has increased green development in the pilot areas. (2) The main path for China’s carbon emission trading policy to achieve carbon emission reduction and regional green development is to promote technology adoption. (3) China’s carbon emission trading policy achieves green development through synergistic SO2 emission reduction. The pilot carbon markets have reduced both the amount of SO2 emissions and SO2 emission intensity.


Sign in / Sign up

Export Citation Format

Share Document