scholarly journals On solvability of the Dirichlet and Neumann boundary value problems for the Poisson equation with multiple involution

Author(s):  
B.Kh. Turmetov ◽  
V.V. Karachik

Transformations of the involution type are considered in the space $R^l$, $l\geq 2$. The matrix properties of these transformations are investigated. The structure of the matrix under consideration is determined and it is proved that the matrix of these transformations is determined by the elements of the first row. Also, the symmetry of the matrix under study is proved. In addition, the eigenvectors and eigenvalues of the matrix under consideration are found explicitly. The inverse matrix is also found and it is proved that the inverse matrix has the same structure as the main matrix. The properties of the nonlocal analogue of the Laplace operator are introduced and studied as applications of the transformations under consideration. For the corresponding nonlocal Poisson equation in the unit ball, the solvability of the Dirichlet and Neumann boundary value problems is investigated. A theorem on the unique solvability of the Dirichlet problem is proved, an explicit form of the Green's function and an integral representation of the solution are constructed, and the order of smoothness of the solution of the problem in the Hölder class is found. Necessary and sufficient conditions for the solvability of the Neumann problem, an explicit form of the Green's function, and the integral representation are also found.


2020 ◽  
Vol 71 (3) ◽  
pp. 74-83
Author(s):  
M. Koshanova ◽  
◽  
М. Muratbekova ◽  
B. Turmetov ◽  
◽  
...  

In this paper, we study new classes of boundary value problems for a nonlocal analogue of the Poisson equation. The boundary conditions, as well as the nonlocal Poisson operator, are specified using transformation operators with orthogonal matrices. The paper investigates the questions of solvability of analogues of boundary value problems of the Dirichlet and Neumann type. It is proved that, as in the classical case, the analogue of the Dirichlet problem is unconditionally solvable. For it, theorems on the existence and uniqueness of the solution to the problem are proved. An explicit form of the Green's function, a generalized Poisson kernel, and an integral representation of the solution are found. For an analogue of the Neumann problem, an exact solvability condition is found in the form of a connection between integrals of given functions. The Green's function and an integral representation of the solution of the problem under study are also constructed.



2016 ◽  
Vol 56 (3) ◽  
pp. 245
Author(s):  
Marzena Szajewska ◽  
Agnieszka Tereszkiewicz

Boundary value problems are considered on a simplex <em>F</em> in the real Euclidean space R<sup>2</sup>. The recent discovery of new families of special functions, orthogonal on <em>F</em>, makes it possible to consider not only the Dirichlet or Neumann boundary value problems on <em>F</em>, but also the mixed boundary value problem which is a mixture of Dirichlet and Neumann type, ie. on some parts of the boundary of <em>F</em> a Dirichlet condition is fulfilled and on the other Neumann’s works.







Author(s):  
Hong Wang ◽  
Danping Yang

AbstractFractional differential equation (FDE) provides an accurate description of transport processes that exhibit anomalous diffusion but introduces new mathematical difficulties that have not been encountered in the context of integer-order differential equation. For example, the wellposedness of the Dirichlet boundary-value problem of one-dimensional variable-coefficient FDE is not fully resolved yet. In addition, Neumann boundary-value problem of FDE poses significant challenges, partly due to the fact that different forms of FDE and different types of Neumann boundary condition have been proposed in the literature depending on different applications.We conduct preliminary mathematical analysis of the wellposedness of different Neumann boundary-value problems of the FDEs. We prove that five out of the nine combinations of three different forms of FDEs that are closed by three types of Neumann boundary conditions are well posed and the remaining four do not admit a solution. In particular, for each form of the FDE there is at least one type of Neumann boundary condition such that the corresponding boundary-value problem is well posed, but there is also at least one type of Neumann boundary condition such that the corresponding boundary-value problem is ill posed. This fully demonstrates the subtlety of the study of FDE, and, in particular, the crucial mathematical modeling question: which combination of FDE and fractional Neumann boundary condition, rather than which form of FDE or fractional Neumann boundary condition, should be used and studied in applications.



Sign in / Sign up

Export Citation Format

Share Document