scholarly journals The Leaf Function of Graphs Associated with Penrose Tilings

2020 ◽  
Vol 1 (1) ◽  
pp. 1-24
Author(s):  
Carole Porrier

In graph theory, the question of fully leafed induced subtrees has recently been investigated by Blondin Massé et al in regular tilings of the Euclidian plane and 3-dimensional space. The function LG that gives the maximum number of leaves of an induced subtree of a graph $G$ of order $n$, for any $n\in \N$, is called leaf function. This article is a first attempt at studying this problem in non-regular tilings, more specifically Penrose tilings. We rely not only on geometric properties of Penrose tilings, that allow us to find an upper bound for the leaf function in these tilings, but also on their links to the Fibonacci word, which give us a lower bound. Our approach rely on a purely discrete representation of points in the tilings, thus preventing numerical errors and improving computation efficiency. Finally, we present a procedure to dynamically generate induced subtrees without having to generate the whole patch surrounding them.


2010 ◽  
Vol 2010 ◽  
pp. 1-11
Author(s):  
Qin Guo ◽  
Mingxing Luo ◽  
Lixiang Li ◽  
Yixian Yang

From the perspectives of graph theory and combinatorics theory we obtain some new upper bounds on the number of encoding nodes, which can characterize the coding complexity of the network coding, both in feasible acyclic and cyclic multicast networks. In contrast to previous work, during our analysis we first investigate the simple multicast network with source rateh=2, and thenh≥2. We find that for feasible acyclic multicast networks our upper bound is exactly the lower bound given by M. Langberg et al. in 2006. So the gap between their lower and upper bounds for feasible acyclic multicast networks does not exist. Based on the new upper bound, we improve the computational complexity given by M. Langberg et al. in 2009. Moreover, these results further support the feasibility of signatures for network coding.



2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Paul D. Manuel ◽  
Bharati Rajan ◽  
Indra Rajasingh ◽  
P. Vasanthi Beulah

Graph Theory International audience We draw the r-dimensional butterfly network with 1 / 44r+O(r2r) crossings which improves the previous estimate given by Cimikowski (1996). We also give a lower bound which matches the upper bound obtained in this paper.



2011 ◽  
Vol 20 (4) ◽  
pp. 617-621 ◽  
Author(s):  
ABBAS MEHRABIAN

We consider a variant of the Cops and Robbers game where the robber can movetedges at a time, and show that in this variant, the cop number of ad-regular graph with girth larger than 2t+2 is Ω(dt). By the known upper bounds on the order of cages, this implies that the cop number of a connectedn-vertex graph can be as large as Ω(n2/3) ift≥ 2, and Ω(n4/5) ift≥ 4. This improves the Ω($n^{\frac{t-3}{t-2}}$) lower bound of Frieze, Krivelevich and Loh (Variations on cops and robbers,J. Graph Theory, to appear) when 2 ≤t≤ 6. We also conjecture a general upper boundO(nt/t+1) for the cop number in this variant, generalizing Meyniel's conjecture.



10.37236/6531 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Michitaka Furuya ◽  
Naoki Matsumoto

In [J. Graph Theory 13 (1989) 749—762], McCuaig and Shepherd gave an upper bound of the domination number for connected graphs with minimum degree at least two. In this paper, we propose a simple strategy which, together with the McCuaig-Shepherd theorem, gives a sharp upper bound of the domination number via the number of leaves. We also apply the same strategy to other domination-like invariants, and find a relationship between such invariants and the number of leaves.



10.37236/328 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
János Barát ◽  
Miloš Stojaković

We analyze the duration of the unbiased Avoider-Enforcer game for three basic positional games. All the games are played on the edges of the complete graph on $n$ vertices, and Avoider's goal is to keep his graph outerplanar, diamond-free and $k$-degenerate, respectively. It is clear that all three games are Enforcer's wins, and our main interest lies in determining the largest number of moves Avoider can play before losing. Extremal graph theory offers a general upper bound for the number of Avoider's moves. As it turns out, for all three games we manage to obtain a lower bound that is just an additive constant away from that upper bound. In particular, we exhibit a strategy for Avoider to keep his graph outerplanar for at least $2n-8$ moves, being just $6$ short of the maximum possible. A diamond-free graph can have at most $d(n)=\lceil\frac{3n-4}{2}\rceil$ edges, and we prove that Avoider can play for at least $d(n)-3$ moves. Finally, if $k$ is small compared to $n$, we show that Avoider can keep his graph $k$-degenerate for as many as $e(n)$ moves, where $e(n)$ is the maximum number of edges a $k$-degenerate graph can have.



2020 ◽  
Vol 37 (04) ◽  
pp. 2040008 ◽  
Author(s):  
Man-Man Dong ◽  
Hai-Bin Chen

In this paper, we explore some geometric properties of the cones in terms of extreme rays, exposed rays, the exposed face and the maximal face. To this end, we first show that all copositive tensors orthogonal to the generating tensor of the exposed ray in completely positive tensor cone construct a maximal face of the copositive tensor cone, then give a characterization on the maximal face of the copositive tensor cone. Third, we show that each extreme ray of the completely positive tensor cone is an exposed ray in the even order case. Finally, we give a lower bound and an upper bound for the maximal face of the completely positive tensor cone.



Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 923 ◽  
Author(s):  
Naveed Ahmed Azam ◽  
Aleksandar Shurbevski ◽  
Hiroshi Nagamochi

Graph enumeration with given constraints is an interesting problem considered to be one of the fundamental problems in graph theory, with many applications in natural sciences and engineering such as bio-informatics and computational chemistry. For any two integers n≥1 and Δ≥0, we propose a method to count all non-isomorphic trees with n vertices, Δ self-loops, and no multi-edges based on dynamic programming. To achieve this goal, we count the number of non-isomorphic rooted trees with n vertices, Δ self-loops and no multi-edges, in O(n2(n+Δ(n+Δ·min{n,Δ}))) time and O(n2(Δ2+1)) space, since every tree can be uniquely viewed as a rooted tree by either regarding its unicentroid as the root, or in the case of bicentroid, by introducing a virtual vertex on the bicentroid and assuming the virtual vertex to be the root. By this result, we get a lower bound and an upper bound on the number of tree-like polymer topologies of chemical compounds with any “cycle rank”.





2009 ◽  
Author(s):  
Xiu Jianjuan ◽  
Li Yuli ◽  
He You ◽  
Wang Guohong


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tomoya Miura ◽  
Shun Maeta

Abstract We show that any triharmonic Riemannian submersion from a 3-dimensional space form into a surface is harmonic. This is an affirmative partial answer to the submersion version of the generalized Chen conjecture. Moreover, a non-existence theorem for f -biharmonic Riemannian submersions is also presented.



Sign in / Sign up

Export Citation Format

Share Document