source rate
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jonas S. Wilzewski ◽  
Johan Strandgren ◽  
Andreas Baumgartner ◽  
Peter Haschberger ◽  
Claas Köhler ◽  
...  

<p>Monitoring of anthropogenic carbon dioxide (CO2) emission sources with air- and space-borne remote sensing instruments relies on high-spatial resolution measurements. Such observations can be achieved at the expense of decreasing the spectral resolution of the instrument, which in turn complicates CO2 retrieval techniques due to the reduced information content of the spectra.</p><p>In preparation for the CO2IMAGE mission (Δλ ~ 1.3 nm) – a compact satellite proposal currently in phase A at the German Aerospace Center (DLR) – we present here a dedicated study of CO2 monitoring capabilities with the airborne AVIRIS-NG sensor (Δλ ~ 5 nm). We conduct CO2 retrievals of several clear-sky AVIRIS-NG point source observations with the RemoTeC algorithm, based on the short-wave infrared absorption bands of CO2. Favorable state vector and spectral retrieval window configurations are identified that reduce correlations between the carbon dioxide and water vapor column concentrations and surface reflection properties. We also discuss the use of a posteriori correction methods to minimize biases in the retrieved CO2 fields and, finally, we carry out source rate estimates for these case studies.</p>


Author(s):  
Cesare Grava ◽  
Dana M Hurley ◽  
Paul D Feldman ◽  
Kurt D Retherford ◽  
Thomas K Greathouse ◽  
...  

Abstract We report a comprehensive study by the UV spectrograph LAMP onboard the Lunar Reconnaissance Orbiter to map the spatial distribution and temporal evolution of helium atoms in the lunar exosphere, via spectroscopy of the HeI emission line at 58.4 nm. Comparisons with several Monte Carlo models show that lunar exospheric helium is fully thermalized with the surface (accommodation coefficient of 1.0). LAMP-derived helium source rates are compared to the flux of solar wind alpha particles measured in situ by the ARTEMIS twin spacecraft. Our observations confirm that these alpha particles (He++) are the main source of lunar exospheric helium, representing 79% of the total source rate, with the remaining 21% presumed to be outgassing from the lunar interior. The endogenic source rate we derive, (1.49 ± 0.08) · 106 cm-2s-1, is consistent with previous measurements but is now better constrained. LAMP-constrained exospheric surface densities present a dawn/dusk ratio of ∼1.8, within the value measured by the Apollo 17 surface mass spectrometer LACE. Finally, observations of lunar helium during three Earth’s magnetotail crossings, when the Moon is shielded from the solar wind, confirm previous observations of an exponential decay of helium with a time constant of 4.5 days.


2020 ◽  
Vol 7 (11) ◽  
pp. 11276-11289
Author(s):  
Tengjiao He ◽  
Kwan-Wu Chin ◽  
Sieteng Soh ◽  
Changlin Yang ◽  
Jinming Wen

2020 ◽  
Vol 69 (10) ◽  
pp. 11880-11892
Author(s):  
Tengjiao He ◽  
Kwan-Wu Chin ◽  
Sieteng Soh ◽  
Changlin Yang ◽  
Jinming Wen
Keyword(s):  

EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

The five Rs of nutrient stewardship is a mnemonic device used to emphasize accuracy and precision for nutrient management so as to apply the (1) right source of fertilizer at the (2) right rate at the (3) right time in the (4) right place with the (5) right irrigation. Because the majority of Florida's soils are sandy, this fifth R is imperative for sustainable nutrient management for commercial crop production. These main points of nutrient management (source, rate, time, place, irrigation) may help enhance sustainability by reducing pollution by eutrophication, nitrogen loss through ammonia volatilization, and climate change from soil greenhouse gas emission. This new 8-page publication of the UF/IFAS Horticultural Sciences Department was written by Mary Dixon and Guodong Liu.https://edis.ifas.ufl.edu/hs1386


2019 ◽  
Vol 19 (11) ◽  
pp. 7583-7594 ◽  
Author(s):  
Jaeseok Kim ◽  
Young Jun Yoon ◽  
Yeontae Gim ◽  
Jin Hee Choi ◽  
Hyo Jin Kang ◽  
...  

Abstract. The physical characteristics of aerosol particles during particle bursts observed at King Sejong Station in the Antarctic Peninsula from March 2009 to December 2016 were analyzed. This study focuses on the seasonal variation in parameters related to particle formation such as the occurrence, formation rate (FR) and growth rate (GR), condensation sink (CS) and source rate of condensable vapor. The number concentrations during new particle formation (NPF) events varied from 1707 to 83 120 cm−3, with an average of 20 649 ± 9290 cm−3, and the duration of the NPF events ranged from 0.6 to 14.4 h, with a mean of 4.6±1.5 h. The NPF event dominantly occurred during austral summer period (∼72 %). The measured mean values of FR and GR of the aerosol particles were 2.79±1.05 cm−3 s−1 and 0.68±0.27 nm h−1, respectively, showing enhanced rates in the summer season. The mean value of FR at King Sejong Station was higher than that at other sites in Antarctica, at 0.002–0.3 cm−3 s−1, while those of growth rates were relatively similar to the results observed by previous studies, at 0.4–4.3 nm h−1. The derived average values of CS and source rate of condensable vapor were (6.04±2.74)×10-3 s−1 and (5.19±3.51)×104 cm−3 s−1, respectively. The contribution of particle formation to cloud condensation nuclei (CCN) concentration was also investigated. The CCN concentration during the NPF period increased by approximately 11 % compared with the background concentration. In addition, the effects of the origin and pathway of air masses on the characteristics of aerosol particles during a NPF event were determined. The FRs were similar regardless of the origin and pathway, whereas the GRs of particles originating from the Antarctic Peninsula and the Bellingshausen Sea, at 0.77±0.25 and 0.76±0.30 nm h−1, respectively, were higher than those of particles originating from the Weddell Sea (0.41±0.15 nm h−1).


2018 ◽  
Author(s):  
Jaeseok Kim ◽  
Young Jun Yoon ◽  
Yeontae Gim ◽  
Jin Hee Choi ◽  
Hyo Jin Kang ◽  
...  

Abstract. The physical characteristics of aerosol particles during a particle burst observed at King Sejong Station in Antarctic Peninsula from March 2009 to December 2016 were analyzed. This study focuses on the seasonal variation in parameters related to particle formation such as the occurrence, formation rate (FR) and growth rate (GR), condensation sink (CS), and source rate of condensable vapor. The number concentrations during new particle formation (NPF) events varied from 1707 cm−3 to 83 120 cm−3, with an average of 20 649 ± 9290 cm−3, and the duration of the NPF events ranged from 0.6 h to 14.4 h, with a mean of 4.6 ± 1.5 h. The NPF event dominantly occurred during austral summer period (~ 72 %). The mean values of FR and GR of the aerosol particles were 2.79 ± 1.05 cm−3 s−1 and 0.68 ± 0.27 nm h−1, respectively showing enhanced rates in the summer season. The mean value of FR at King Sejong Station was higher than that at other sites in Antarctica, at 0.002–0.3 cm−3 s−1, while those of growth rates was relatively similar results observed by precious studies, at 0.4~4.3 nm h−1. The average values of CS and source rate of condensable vapor were (6.04 ± 2.74) × 10−3 s−1 and (5.19 ± 3.51) × 104 cm−3 s−1, respectively. The contribution of particle formation to cloud condensation nuclei (CCN) concentration was also investigated. The CCN concentration during the NPF period increased approximately 9 % compared with the background concentration. In addition, the effects of the origin and pathway of air masses on the characteristics of aerosol particles during a NPF event were determined. The FRs were similar regardless of the origin and pathway, whereas the GRs of particles originating from the Antarctic Peninsula and the Bellingshausen Sea, at 0.77 ± 0.25 nm h−1 and 0.76 ± 0.30 nm h−1, respectively, were higher than those of particles originating from the Weddell Sea (0.41 ± 0.15 nm h−1).


Sign in / Sign up

Export Citation Format

Share Document