scholarly journals A Quadratic Programming Approach to Manipulation in Real-Time Using Modular Robots

2021 ◽  
Vol 3 (1) ◽  
pp. 121-145
Author(s):  
Chao Liu ◽  
Mark Yim

Motion planning in high-dimensional space is a challenging task. In order to perform dexterous manipulation in an unstructured environment, a robot with many degrees of freedom is usually necessary, which also complicates its motion planning problem. Real-time control brings about more difficulties in which robots have to maintain the stability while moving towards the target. Redundant systems are common in modular robots that consist of multiple modules and are able to transform into different configurations with respect to different needs. Different from robots with fixed geometry or configurations, the kinematics model of a modular robotic system can alter as the robot reconfigures itself, and developing a generic control and motion planning approach for such systems is difficult, especially when multiple motion goals are coupled. A new manipulation planning framework is developed in this paper. The problem is formulated as a sequential linearly constrained quadratic program (QP) that can be solved efficiently. Some constraints can be incorporated into this QP, including a novel way to approximate environment obstacles. This solution can be used directly for real-time applications or as an off-line planning tool, and it is validated and demonstrated on the CKBot and the SMORES-EP modular robot platforms.

Author(s):  
Abhishek Jha ◽  
Shital S. Chiddarwar

Purpose This paper aims to present a new learning from demonstration-based trajectory planner that generalizes and extracts relevant features of the desired motion for an industrial robot. Design/methodology/approach The proposed trajectory planner is based on the concept of human arm motion imitation by the robot end-effector. The teleoperation-based real-time control architecture is used for direct and effective imitation learning. Using this architecture, a self-sufficient trajectory planner is designed which has inbuilt mapping strategy and direct learning ability. The proposed approach is also compared with the conventional robot programming approach. Findings The developed planner was implemented on the 5 degrees-of-freedom industrial robot SCORBOT ER-4u for an object manipulation task. The experimental results revealed that despite morphological differences, the robot imitated the demonstrated trajectory with more than 90 per cent geometric similarity and 60 per cent of the demonstrations were successfully learned by the robot with good positioning accuracy. The proposed planner shows an upper hand over the existing approach in robustness and operational ease. Research limitations/implications The approach assumes that the human demonstrator has the requisite expertise of the task demonstration and robot teleoperation. Moreover, the kinematic capabilities and the workspace conditions of the robot are known a priori. Practical implications The real-time implementation of the proposed methodology is possible and can be successfully used for industrial automation with very little knowledge of robot programming. The proposed approach reduces the complexities involved in robot programming by direct learning of the task from the demonstration given by the teacher. Originality/value This paper discusses a new framework blended with teleoperation and kinematic considerations of the Cartesian space, as well joint space of human and industrial robot and optimization for the robot programming by demonstration.


2001 ◽  
Author(s):  
Tamás Kalmár-Nagy ◽  
Pritam Ganguly ◽  
Raffaello D’Andrea

Abstract In this paper, we discuss an innovative method of generating near-optimal trajectories for a robot with omni-directional drive capabilities, taking into account the dynamics of the actuators and the system. The relaxation of optimality results in immense computational savings, critical in dynamic environments. In particular, a decoupling strategy for each of the three degrees of freedom of the vehicle is presented, along with a method for coordinating the degrees of freedom. A nearly optimal trajectory for the vehicle can typically be calculated in less than 1000 floating point operations, which makes it attractive for real-time control in dynamic and uncertain environments.


2020 ◽  
Author(s):  
Gang Liu ◽  
Lu Wang ◽  
Jing Wang

Myoelectric prosthetic hands create the possibility for amputees to control their prosthetics like native hands. However, user acceptance of the extant myoelectric prostheses is low. Unnatural control, lack of sufficient feedback, and insufficient functionality are cited as primary reasons. Recently, although many multiple degrees-of-freedom (DOF) prosthetic hands and tactile-sensitive electronic skins have been developed, no non-invasive myoelectric interfaces can decode both forces and motions for five-fingers independently and simultaneously. This paper proposes a myoelectric interface based on energy allocation and fictitious forces hypothesis by mimicking the natural neuromuscular system. The energy-based interface uses a kind of continuous “energy mode” in the level of the entire hand. According to tasks itself, each energy mode can adaptively and simultaneously implement multiple hand motions and exerting continuous forces for a single finger. Also, a few learned energy modes could extend to the unlearned energy mode, highlighting the extensibility of this interface. We evaluate the proposed system through off-line analysis and operational experiments performed on the expression of the unlearned hand motions, the amount of finger energy, and real-time control. With active exploration, the participant was proficient at exerting just enough energy to five fingers on “fragile” or “heavy” objects independently, proportionally, and simultaneously in real-time. The main contribution of this paper is proposing the bionic energy-motion model of hand: decoding a few muscle-energy modes of the human hand (only ten modes in this paper) map massive tasks of bionic hand.


Author(s):  
Noémie Périvier ◽  
Chamsi Hssaine ◽  
Samitha Samaranayake ◽  
Siddhartha Banerjee

We study real-time routing policies in smart transit systems, where the platform has a combination of cars and high-capacity vehicles (e.g., buses or shuttles) and seeks to serve a set of incoming trip requests. The platform can use its fleet of cars as a feeder to connect passengers to its high-capacity fleet, which operates on fixed routes. Our goal is to find the optimal set of (bus) routes and corresponding frequencies to maximize the social welfare of the system in a given time window. This generalizes the Line Planning Problem, a widely studied topic in the transportation literature, for which existing solutions are either heuristic (with no performance guarantees), or require extensive computation time (and hence are impractical for real-time use). To this end, we develop a 1-1/e-ε approximation algorithm for the Real-Time Line Planning Problem, using ideas from randomized rounding and the Generalized Assignment Problem. Our guarantee holds under two assumptions: (i) no inter-bus transfers and (ii) access to a pre-specified set of feasible bus lines. We moreover show that these two assumptions are crucial by proving that, if either assumption is relaxed, the łineplanningproblem does not admit any constant-factor approximation. Finally, we demonstrate the practicality of our algorithm via numerical experiments on real-world and synthetic datasets, in which we show that, given a fixed time budget, our algorithm outperforms Integer Linear Programming-based exact methods.


Author(s):  
Wei-Ye Zhao ◽  
Suqin He ◽  
Chengtao Wen ◽  
Changliu Liu

Abstract Applying intelligent robot arms in dynamic uncertain environments (i.e., flexible production lines) remains challenging, which requires efficient algorithms for real time trajectory generation. The motion planning problem for robot trajectory generation is highly nonlinear and nonconvex, which usually comes with collision avoidance constraints, robot kinematics and dynamics constraints, and task constraints (e.g., following a Cartesian trajectory defined on a surface and maintain the contact). The nonlinear and nonconvex planning problem is computationally expensive to solve, which limits the application of robot arms in the real world. In this paper, for redundant robot arm planning problems with complex constraints, we present a motion planning method using iterative convex optimization that can efficiently handle the constraints and generate optimal trajectories in real time. The proposed planner guarantees the satisfaction of the contact-rich task constraints and avoids collision in confined environments. Extensive experiments on trajectory generation for weld grinding are performed to demonstrate the effectiveness of the proposed method and its applicability in advanced robotic manufacturing.


1993 ◽  
Vol 5 (5) ◽  
pp. 481-486 ◽  
Author(s):  
Masafumi Uchida ◽  
◽  
Syuichi Yokoyama ◽  
Hideto Ide ◽  

The potential method is superior for solving the problem of motion planning; however, it must address the problem of the real-time generation of potential field. Obstacle avoidance is a motion planning problem. In a previous study, we investigated the real-time generation of potential field. Based on parallel processing with element group, we proposed the system by Sensory Point Moving (SPM) method. As a result of computer simulation, it was confirmed that the SPM method is effective for generating an obstacle avoidance path in 2-D and a more complex working environment like a 3-D one. In this paper, we discuss the development of autonomous mobile robot for obstacle avoidance based on the SPM method.


Author(s):  
Elie Shammas ◽  
Daniel Asmar

In this paper, we solve the motion planning problem for a class of underactuated multibodied planar mechanical systems. These systems interact with the environment via viscous frictional forces. The motion planning problem is solved by specifying the location of friction pads on the robot as well as by specifying the input of the actuated degrees of freedom. Moreover, through the proposed novel motion planning analysis, we identify the simplest planar swimming robot, the two-link swimmer.


Author(s):  
Agamemnon Krasoulis ◽  
Kianoush Nazarpour

ABSTRACTThe ultimate goal of machine learning-based myoelectric control is simultaneous and independent control of multiple degrees of freedom (DOFs), including wrist and digit artificial joints. For prosthetic finger control, regression-based methods are typically used to reconstruct position/velocity trajectories from surface electromyogram (EMG) signals. Although such methods have produced highly-accurate results in offline analyses, their success in real-time prosthesis control settings has been rather limited. In this work, we propose action decoding, a paradigm-shifting approach for independent, multi-digit movement intent decoding based on multi-label, multi-class classification. At each moment in time, our algorithm classifies movement action for each available DOF into one of three categories: open, close, or stall (i.e., no movement). Despite using a classifier as the decoder, arbitrary hand postures are possible with our approach. We analyse a public dataset previously recorded and published by us, comprising measurements from 10 able-bodied and two transradial amputee participants. We demonstrate the feasibility of using our proposed action decoding paradigm to predict movement action for all five digits as well as rotation of the thumb. We perform a systematic offline analysis by investigating the effect of various algorithmic parameters on decoding performance, such as feature selection and choice of classification algorithm and multi-output strategy. The outcomes of the offline analysis presented in this study will be used to inform the real-time implementation of our algorithm. In the future, we will further evaluate its efficacy with real-time control experiments involving upper-limb amputees.


2018 ◽  
Vol 37 (7) ◽  
pp. 779-817 ◽  
Author(s):  
Troy McMahon ◽  
Shawna Thomas ◽  
Nancy M Amato

Motion planning for constrained systems is a version of the motion planning problem in which the motion of a robot is limited by constraints. For example, one can require that a humanoid robot such as a PR2 remain upright by constraining its torso to be above its base or require that an object such as a bucket of water remain upright by constraining the vertices of the object to be parallel to the robot’s base. Grasping can be modeled by requiring that the end effectors of the robot be located at specified handle positions. Constraints might require that the robot remain in contact with a surface, or that certain joints of the robot remain in contact with each other (e.g., closed chains). Such problems are particularly difficult because the constraints form a manifold in C-space, and planning must be restricted to this manifold. High-degree-of-freedom motion planning and motion planning for constrained systems has applications in parallel robotics, grasping and manipulation, computational biology and molecular simulations, and animation. We introduce a new concept, reachable volumes, that are a geometric representation of the regions the joints and end effectors of a robot can reach, and use it to define a new planning space called RV-space where all points automatically satisfy a problem’s constraints. Visualizations of reachable volumes can enable operators to see the regions of workspace that different parts of the robot can reach. Samples and paths generated in RV-space naturally conform to constraints, making planning for constrained systems no more difficult than planning for unconstrained systems. Consequently, constrained motion planning problems that were previously difficult or unsolvable become manageable and in many cases trivial. We introduce tools and techniques to extend the state-of-the-art sampling-based motion planning algorithms to RV-space. We define a reachable volumes sampler, a reachable volumes local planner, and a reachable volumes distance metric. We showcase the effectiveness of RV-space by applying these tools to motion planning problems for robots with constraints on the end effectors and/or internal joints of the robot. We show that RV-based planners are more efficient than existing methods, particularly for higher-dimensional problems, solving problems with 1000 or more degrees of freedom for multi-loop and tree-like linkages.


Sign in / Sign up

Export Citation Format

Share Document