scholarly journals Finite difference method for electric field optimization in high voltage power transformer bushings using engineering simulation and 3D design program

2021 ◽  
Vol 5 (1) ◽  
pp. 1-7
Author(s):  
Nihat PAMUK
2016 ◽  
Vol 20 (5) ◽  
pp. 1359-1380 ◽  
Author(s):  
Peder Aursand ◽  
Gaetano Napoli ◽  
Johanna Ridder

AbstractWe propose an implicit finite-difference method to study the time evolution of the director field of a nematic liquid crystal under the influence of an electric field with weak anchoring at the boundary. The scheme allows us to study the dynamics of transitions between different director equilibrium states under varying electric field and anchoring strength. In particular, we are able to simulate the transition to excited states of odd parity, which have previously been observed in experiments, but so far only analyzed in the static case.


Author(s):  
Himadri Sekhar Basu ◽  
Supreet Singh Bahga ◽  
Sasidhar Kondaraju

Transient electrokinetic (EK) flows involve the transport of conductivity gradients developed as a result of mixing of ionic species in the fluid, which in turn is affected by the electric field applied across the channel. The presence of three different coupled equations with corresponding different time scales makes it difficult to model the problem using the lattice Boltzmann method (LBM). The present work aims to develop a hybrid LBM and finite difference method (FDM)-based model which can be used to study the electro-osmotic flows (EOFs) and the onset of EK instabilities using an Ohmic model, where fluid and conductivity transport are solved using LBM and the electric field is solved using FDM. The model developed will be used to simulate three different problems: (i) EOF with varying zeta-potential on the wall, (ii) similitude in EOF, and (iii) EK instabilities due to the presence of conductivity gradients. Problems (i) and (ii) will be compared with the analytical results and problem (iii) will be compared with the simulations of a spectral method-based numerical model. The results obtained from the present simulations will show that the developed model is capable of studying transient EK flows and of predicting the onset of instability.


2010 ◽  
Vol 23 (1) ◽  
pp. 17-35
Author(s):  
Dusan Djurdjevic

The finite difference method is often-used numerical simulation method in electromagnetics. In this paper a new methodology is presented that allows the derivation of finite difference formulas near dielectric interfaces with high accuracy. Derived finite difference formulas have been used in the electric field computations in electrostatics (the two-dimensional Laplace's equation is employed) and in full-vectorial waveguide simulations in photonics (the three-dimensional Helmholtz's equation and the beam propagation simulation technique in frequency domain are employed). The finite difference formulas derivation is made under a power series expansion of the transverse field components in the case for uniform rectangular discretization mesh. The resulting finite difference formulas provide highly accurate solutions, both for electrostatic and waveguide propagation problems even on coarse grids and thus enable a very cost-effective and rapid numerical field simulations. Reported methodology and derived formulas have not been used in finite difference method formulations in literature. Some results for the electric field computation and dielectric waveguide eigenmode and propagation analysis are presented. .


Sign in / Sign up

Export Citation Format

Share Document