scholarly journals Behavioural Study of R/C Natural Draught Cooling Towerunder Gravity Load using Different Support Orientations

In the field of both atomic and thermal power-plant the Natural Draught Cooling Tower plays a very important role. The vulnerability of NDCT lies in its hyperbolic shell structure whereas the supporting columns play a pivotal role in load distribution and heat transfer mechanism. Throughout our study effort has been given to find out the behavior of Reinforced Concrete NDCT under static loading using two different types of support orientation. For enhanced accuracy finite element analysis method has been adopted. The geometry of NDCT has been created by strictly following IS code provisions. A detail analysis has been presented in terms of deflection, stress propagation and strain behavior under gravity load. In the final stage a comparison of response behavior of the hyperbolic shell and supporting columns has been prepared with various key components of stress strain behavior.

2004 ◽  
Vol 126 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Hiroshi Yatabe ◽  
Naoki Fukuda ◽  
Tomoki Masuda ◽  
Masao Toyoda

In this study, the deformability of high-grade pipelines subjected to an axial compressive deformation was experimentally and analytically discussed. Six cases of axial compression experiments with high-grade line pipe were carried out. The pipe specimens had various material properties and wall thickness. Finite-element analyses were also carried out and verified the reliability. Then, a finite-element analysis method for evaluating the deformability of the line pipe was established. By using this method, parametric studies were carried out. The effects of the strain-hardening behavior and pipe geometry on the deformability of the high-grade pipelines were examined.


2012 ◽  
Vol 155-156 ◽  
pp. 474-478
Author(s):  
Yi Lu ◽  
Song Lin Zheng ◽  
Jin Zhi Feng ◽  
Li Hui Zhao

In this paper, the load distribution of the rear axle of a MPV is preanalyzed, by using the finite element analysis method, which obtains the contour and the strain tensor maps in the four working conditions of the rear axle: static load, braking, steering and torsion. By analyzing the contour and strain tensor maps, the key load locations and their main stress direction is identified. Through processing data of the calibration tests, the equations of linear regression between load and strain on the rear axle are determined.Comparing with the real 5vehicle road test results, the placement locations of the sensor on the rear axle, which is determined through the finite element analysis, are verified to be correct.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Shou-Jun Chen ◽  
Qi An ◽  
Yi Zhang ◽  
Lian-Xin Gao ◽  
Qiang Li

This paper presents a new analytical method that can calculate the load distribution on the thread teeth in cylindrical pipe threaded connection. The new method was developed by analyzing each male and female thread tooth from the connection on the basis of elastic mechanics. By using this method, the load distribution on each thread tooth can be calculated with the tightening torque and thread numbers. By applying the new method on the sample of API 88.9 mm round threaded connection, the obtained results show that the load on thread tooth mainly concentrates on the last four or five threads engaged. By using the finite element analysis method to the same sample validates the new method. The new method proposed in this paper is practical and convenient because it can be applied to calculate the load and deformation on each thread tooth just with tightening torque and thread numbers, which is easier to implement in practice.


2012 ◽  
Vol 40 (1) ◽  
pp. 25-41 ◽  
Author(s):  
H. M. R. Aboutorabi ◽  
L. Kung

Abstract REFERENCE: H. M. R. Aboutorabi and L. Kung, “Application of Coupled Structural Acoustic Analysis and Sensitivity Calculations to a Tire Noise Problem,” Tire Science and Technology, TSTCA, Vol. 40, No. 1, January – March 2012, pp. 25–41. ABSTRACT: Tire qualification for an original equipment (OE) program consists of several rounds of submissions by the tire manufacturer for evaluation by the vehicle manufacturer. Tires are evaluated both subjectively, where the tire performance is rated by an expert driver, and objectively, where sensors and testing instruments are used to measure the tire performance. At the end of each round of testing the evaluation results are shared and requirements for performance improvement for the next round are communicated with the tire manufacturer. As building and testing is both expensive and time consuming predictive modeling and simulation analysis that can be applied to the performance of the tire is of great interest and value. This paper presents an application of finite element analysis (FEA) modeling along with experimental verification to solve tire noise objections at certain frequencies raised by an original equipment manufacturer (OEM) account. Coupled structural-acoustic analysis method was used to find modal characteristics of the tire at the objectionable frequencies. Sensitivity calculations were then carried out to evaluate the strength of contribution from each tire component to the identified modes. Based on these findings changes to the construction were proposed and implemented that addressed the noise issue.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


1985 ◽  
Vol 58 (4) ◽  
pp. 830-856 ◽  
Author(s):  
R. J. Cembrola ◽  
T. J. Dudek

Abstract Recent developments in nonlinear finite element methods (FEM) and mechanics of composite materials have made it possible to handle complex tire mechanics problems involving large deformations and moderate strains. The development of an accurate material model for cord/rubber composites is a necessary requirement for the application of these powerful finite element programs to practical problems but involves numerous complexities. Difficulties associated with the application of classical lamination theory to cord/rubber composites were reviewed. The complexity of the material characterization of cord/rubber composites by experimental means was also discussed. This complexity arises from the highly anisotropic properties of twisted cords and the nonlinear stress—strain behavior of the laminates. Micromechanics theories, which have been successfully applied to hard composites (i.e., graphite—epoxy) have been shown to be inadequate in predicting some of the properties of the calendered fabric ply material from the properties of the cord and rubber. Finite element models which include an interply rubber layer to account for the interlaminar shear have been shown to give a better representation of cord/rubber laminate behavior in tension and bending. The application of finite element analysis to more refined models of complex structures like tires, however, requires the development of a more realistic material model which would account for the nonlinear stress—strain properties of cord/rubber composites.


Sign in / Sign up

Export Citation Format

Share Document