scholarly journals Optimization of Inventory Model-Cost Parameters, Inventory and Lot Size as Fuzzy Numbers

In general, the demand rate and the unit cost of the items remains constant inspite of lot size in inventory models. But in reality, the demand rate and the unit cost of the items are connected together. In this research, demand dependent unit cost inventory model is considered where different cost parameters, maximum inventory and the lot size of the model are taken under fuzzy environment. First an analytic solution of the crisp model is obtained by the method of calculus where the inventory parameters are exact and deterministic. Later, the problem is developed with fuzzy parameters where inaccuracy has been introduced through triangular membership function.Then the defuzzification of the model is done by using the method of Graded mean integration. An optimal solution is obtained using Karush Kuhn-Tucker conditions approach. An illustrative model is done and an analysis of total cost for different measures of possibility are performed and tabulated.

Author(s):  
R. Kasthuri, Et. al.

This paper considers an inventory model in which the shortages are backlogged and the demand is dependent on unit cost. An optimum value for average total cost is calculated by considering various input costs, lot size and maximum inventory under fuzzy environment. The process of defuzzification is done by using the signed distance method. Numerical example and sensitivity analysis is given for calculating both crisp and fuzzy values of the total cost.


Author(s):  
R. Kasthuria

This paper considers an inventory model in which the shortages are backlogged and the demand is dependent on unit cost. An optimum value for average total cost is calculated by considering various input costs, lot size and maximum inventory under fuzzy environment. The process of defuzzification is done by using the signed distance method. Numerical example and sensitivity analysis is given for calculating both crisp and fuzzy values of the total cost.


2022 ◽  
Vol 11 (1) ◽  
pp. 0-0

In this study, a fuzzy cooperative continuous static game (PQFCCSG) with n players having fuzzy parameters in all of the cost functions and the right- hand-side of constraints is characterized. Their fuzzy parameters are represented by piecewise quadratic fuzzy numbers. The α-pareto optimal solution concept is specified. In addition, the stability sets of the first and second kind without differentiability are conceptualized and established. An illustrated numerical example is discussed for proper understanding and interpretation of the proposed concept.


An EOQ model with demand dependent on unit price is considered and a new approach of finding optimal demand value is done from the optimal unit cost price after defuzzification. Here the cost parameters like setup cost, holding cost and shortage cost and also the decision variables like unit price, lot size and the maximum inventory are taken under fuzzy environment. Triangular fuzzy numbers are used to fuzzify these input parameters and unknown variables. For the proposed model an optimal solution has been determined using Karush Kuhn-Tucker conditions method. Graded Mean Integration (GMI) method is used for defuzzification. Numerical solutions are obtained and sensitivity analysis is done for the chosen model


Author(s):  
Swati Sharma ◽  
S. R. Singh ◽  
Mohit Kumar

In the last few years, inventory modeling with reverse logistics has received more attention from both the academic world and industries. Most of the existing works in the literature believed that newly produced products and remanufactured products have the same quality. However, in many industries, customers do not consider remanufactured products as good as new ones. Therefore, this study develops a reverse logistics inventory model with multiple production and remanufacturing batches (cycles) under the fuzzy environment where the remanufactured products are of subordinate quality as compared to the newly produced products. As the precise estimation of inventory cost parameters such as holding cost, setup cost, etc. becomes often difficult; so these cost parameters are represented as triangular fuzzy numbers. Used products are purchased, screened and then suitable products are remanufactured. The production and remanufacturing rates are demand dependent. The main goal of this study is to obtain the optimal production and remanufacturing policy that minimizes the total cost per unit time of the proposed inventory system. The signed distance method is employed to defuzzify the total cost function. A numerical example is presented to demonstrate the developed model. Finally, sensitivity analysis is executed to study the impact of key parameters on the optimal solution.


2018 ◽  
Vol 15 (01) ◽  
pp. 95-112 ◽  
Author(s):  
Abhishekh ◽  
A. K. Nishad

To the extent of our knowledge, there is no method in fuzzy environment to solving the fully LR-intuitionistic fuzzy transportation problems (LR-IFTPs) in which all the parameters are represented by LR-intuitionistic fuzzy numbers (LR-IFNs). In this paper, a novel ranking function is proposed to finding an optimal solution of fully LR-intuitionistic fuzzy transportation problem by using the distance minimizer of two LR-IFNs. It is shown that the proposed ranking method for LR-intuitionistic fuzzy numbers satisfies the general axioms of ranking functions. Further, we have applied ranking approach to solve an LR-intuitionistic fuzzy transportation problem in which all the parameters (supply, cost and demand) are transformed into LR-intuitionistic fuzzy numbers. The proposed method is illustrated with a numerical example to show the solution procedure and to demonstrate the efficiency of the proposed method by comparison with some existing ranking methods available in the literature.


Intuitionistic Fuzzy Numbers play an active role in finding an optimal solution for replacement problems under vague and uncertain situations. This paper gives a group replacement policy under fuzzy environment. Here all the costs and the number of units are taken as Triangular Intuitionistic Fuzzy Numbers (TIFNs). An example is used for illustration of the policy


Author(s):  
Nita H. Shah ◽  
Sarla Pareek ◽  
Isha Sangal

This paper deals with the problem of determining the EOQ model for deteriorating items in the fuzzy sense where delay in payments is permissible. The demand rate, ordering cost, selling price per item and deterioration rate are taken as fuzzy numbers. The total variable cost in fuzzy sense is de-fuzzified using the centre of gravity method. The solution procedure has been explained with the help of numerical example.


Sign in / Sign up

Export Citation Format

Share Document