scholarly journals Optimization of Single Phase fed three phase VFD using ANN

Several applications in rural areas necessitates the use of single phase fed three-phase VFD’s which need to consider certain constraints. These constraints are usually addressed by strictly de-rating the VFD considering only the DC bus voltage ripple. The other constraints like peak currents of the input diode bridge rectifier and beyond current rating of input terminal blocks in addition voltage ripple across the DC bus capacitor need to be considered for a finest performance of VFD which confines the output power capability to the single-phase rated value of the VFD. A novel motor q-axis current with ANN algorithm is introduced to overcome this problem which takes in to account of all the component stresses which need to be addressed. The simulation for the proposed model is done in MATLAB/Simulink environment. The analysis of average and ripple current controller of motor q-axis current and DC bus ripple voltage is done using the proposed methods.

Author(s):  
Yuwono Bimo Purnomo ◽  
F. Danang Wijaya ◽  
Eka Firmansyah

In a standalone photovoltaic (PV) system, a bidirectional DC converter (BDC) is needed to prevent the battery from damage caused by DC bus voltage variation. In this paper, BDC was applied in a standalone solar PV system to interface the battery with a DC bus in a standalone PV system. Therefore, its bidirectional power capability was focused on improving save battery operation while maintaining high power quality delivery. A non-isolated, buck and boost topology for the BDC configuration was used to interface the battery with the DC bus. PID controller-based control strategy was chosen for easy implementation, high reliability, and high dynamic performance. A simulation was conducted using MATLAB Simulink program. The simulation results show that the implementation of the BDC controller can maintain the DC bus voltage to 100 V, have high efficiency at 99.18% in boost mode and 99.48% in buck mode. To prevent the battery from overcharging condition, the BDC stops the charging process and then works as a voltage regulator to maintain the DC bus voltage at reference value.


2005 ◽  
Vol 18 (3) ◽  
pp. 453-465 ◽  
Author(s):  
Zeljko Grbo ◽  
Slobodan Vukosavic ◽  
Emil Levi

Although apparently simpler, the SRM drives are nowadays more expensive than their conventional AC drive counterparts. This is to a great extent caused by the lack of a standardised power electronic converter for SRM drives, which would be available on the market as a single module. A number of attempts were therefore made in recent times to develop novel power electronic converter structures for SRM drives, based on the utilization of a three-phase voltage source inverter (VSI), which is readily available as a single module. This paper follows this line of thought and presents a novel power electronic converter topology for SRM drives, which is entirely based on utilization of standard inverter legs. One of its most important feature is that both magnetizing and demagnetizing voltage may reach the DC-bus voltage level while being contemporarily applied during the conduction overlap in the SRM adjacent phases. At the same time, the voltage stress across the power switches equals the DC-bus voltage. The topology is functional in all operating regimes of the drive. Principle of operation is explained in detail for a three-phase SRM drive and experimental results obtained with a 6/4 switched reluctance motor, are included. Four inverter legs are required in this case. Some considerations, justifying the proposed converter topology from the point of view of the cost, are included.


Sign in / Sign up

Export Citation Format

Share Document