scholarly journals Age and Gender Prediction using Face Recognition

Author(s):  
Sai Teja Challa ◽  
◽  
Sowjanya Jindam ◽  
Ruchitha Reddy Reddy ◽  
Kalathila Uthej ◽  
...  

Automatic age and gender prediction from face images has lately attracted much attention due to its wide range of applications in numerous facial analyses. We show in this study that utilizing the Caffe Model Architecture of Deep Learning Frame Work; we were able to greatly enhance age and gender recognition by learning representations using deep-convolutional neural networks (CNN). We propose a much simpler convolutional net architecture that can be employed even if no learning data is available. In a recent study presenting a potential benchmark for age and gender estimation, we show that our strategy greatly outperforms existing state-of-the-art methods.

Author(s):  
Héctor A. Sánchez-Hevia ◽  
Roberto Gil-Pita ◽  
Manuel Utrilla-Manso ◽  
Manuel Rosa-Zurera

2021 ◽  
Vol 7 ◽  
pp. e495
Author(s):  
Saleh Albahli ◽  
Hafiz Tayyab Rauf ◽  
Abdulelah Algosaibi ◽  
Valentina Emilia Balas

Artificial intelligence (AI) has played a significant role in image analysis and feature extraction, applied to detect and diagnose a wide range of chest-related diseases. Although several researchers have used current state-of-the-art approaches and have produced impressive chest-related clinical outcomes, specific techniques may not contribute many advantages if one type of disease is detected without the rest being identified. Those who tried to identify multiple chest-related diseases were ineffective due to insufficient data and the available data not being balanced. This research provides a significant contribution to the healthcare industry and the research community by proposing a synthetic data augmentation in three deep Convolutional Neural Networks (CNNs) architectures for the detection of 14 chest-related diseases. The employed models are DenseNet121, InceptionResNetV2, and ResNet152V2; after training and validation, an average ROC-AUC score of 0.80 was obtained competitive as compared to the previous models that were trained for multi-class classification to detect anomalies in x-ray images. This research illustrates how the proposed model practices state-of-the-art deep neural networks to classify 14 chest-related diseases with better accuracy.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 328 ◽  
Author(s):  
Khalil Khan ◽  
Muhammad Attique ◽  
Rehan Ullah Khan ◽  
Ikram Syed ◽  
Tae-Sun Chung

Human face image analysis is an active research area within computer vision. In this paper we propose a framework for face image analysis, addressing three challenging problems of race, age, and gender recognition through face parsing. We manually labeled face images for training an end-to-end face parsing model through Deep Convolutional Neural Networks. The deep learning-based segmentation model parses a face image into seven dense classes. We use the probabilistic classification method and created probability maps for each face class. The probability maps are used as feature descriptors. We trained another Convolutional Neural Network model by extracting features from probability maps of the corresponding class for each demographic task (race, age, and gender). We perform extensive experiments on state-of-the-art datasets and obtained much better results as compared to previous results.


Author(s):  
Antonio Greco ◽  
Alessia Saggese ◽  
Mario Vento ◽  
Vincenzo Vigilante

AbstractIn the era of deep learning, the methods for gender recognition from face images achieve remarkable performance over most of the standard datasets. However, the common experimental analyses do not take into account that the face images given as input to the neural networks are often affected by strong corruptions not always represented in standard datasets. In this paper, we propose an experimental framework for gender recognition “in the wild”. We produce a corrupted version of the popular LFW+ and GENDER-FERET datasets, that we call LFW+C and GENDER-FERET-C, and evaluate the accuracy of nine different network architectures in presence of specific, suitably designed, corruptions; in addition, we perform an experiment on the MIVIA-Gender dataset, recorded in real environments, to analyze the effects of mixed image corruptions happening in the wild. The experimental analysis demonstrates that the robustness of the considered methods can be further improved, since all of them are affected by a performance drop on images collected in the wild or manually corrupted. Starting from the experimental results, we are able to provide useful insights for choosing the best currently available architecture in specific real conditions. The proposed experimental framework, whose code is publicly available, is general enough to be applicable also on different datasets; thus, it can act as a forerunner for future investigations.


Sign in / Sign up

Export Citation Format

Share Document