scholarly journals Design of Nested H slot Passive UHF RFID Tag

RFID is a short distance communication system which comprises of a RFID tag, a RFID reader and a personal computer with desired software that can maintain the related information. These RFID tags can be of active or passive types. This paper focuses on design, simulation and fabrication of passive ultra-high frequency RFID tag (microchip and an antenna) which resonates at the frequency 866 MHz in the Industrial Scientific Medical Band. The nested H-slot inverted-F microstrip antenna structure is used for the design of passive RFID tag. It examines the specific tag geometry and its characteristics to optimize the PIFA antenna and in turn RFID tag’s performance.

RFID is a short distance communication system which comprises of a RFID tag, a RFID reader and a personal computer with desired software that can maintain the related information. These RFID tags can be of active or passive types. This paper focuses on design, simulation and fabrication of passive ultra-high frequency RFID tag (microchip and an antenna) which resonates at the frequency 866 MHz in the Industrial Scientific Medical Band. The nested H-slot inverted-F microstrip antenna structure is used for the design of passive RFID tag. It examines the specific tag geometry and its characteristics to optimize the PIFA antenna and in turn RFID tag’s performance.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Han He ◽  
Lauri Sydänheimo ◽  
Johanna Virkki ◽  
Leena Ukkonen

We present the possibilities and challenges of passive UHF RFID tag antennas manufactured by inkjet printing silver nanoparticle ink on versatile paper-based substrates. The most efficient manufacturing parameters, such as the pattern resolution, were determined and the optimal number of printed layers was evaluated for each substrate material. Next, inkjet-printed passive UHF RFID tags were fabricated on each substrate with the optimized parameters and number of layers. According to our measurements, the tags on different paper substrates showed peak read ranges of 4–6.5 meters and the tags on different cardboard substrates exhibited peak read ranges of 2–6 meters. Based on their wireless performance, these inkjet-printed paper-based passive UHF RFID tags are sufficient for many future wireless applications and comparable to tags fabricated on more traditional substrates, such as polyimide.


2015 ◽  
Vol 8 (3) ◽  
pp. 537-545 ◽  
Author(s):  
Sotirios K. Goudos ◽  
Katherine Siakavara ◽  
Argiris Theopoulos ◽  
Elias E. Vafiadis ◽  
John N. Sahalos

In this paper, new planar spiral antennas with meander lines and loads for passive Radiofrequency identification tag application at ultra-high-frequency band are designed and optimized using the global best (gbest)-guided Artificial Bee Colony (GABC) algorithm. The GABC is an improved Artificial Bee Colony algorithm, which includes gbest solution information into the search equation to improve the exploitation. The optimization goals are antenna size minimization, gain maximization, and conjugate matching. The antenna dimensions were optimized and evaluated in conjunction with commercial software FEKO. GABC is compared with other popular algorithms. The optimization results produced show that GABC is a powerful optimization algorithm that can be efficiently applied to tag antenna design problems.


2015 ◽  
Vol 6 (4) ◽  
pp. 171-184
Author(s):  
Liangbo Xie ◽  
Jiaxin Liu ◽  
Yao Wang ◽  
Chuan Yin ◽  
Guangjun Wen

2011 ◽  
Vol 25 (5) ◽  
pp. 468-473
Author(s):  
Weifeng Liu ◽  
Yiqi Zhuang ◽  
Zengwei Qi ◽  
Longfei Tang

Author(s):  
N. Vidal ◽  
A. Salas-Barenys ◽  
A. Garcia ◽  
J. Romeu ◽  
G. Gonzalez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document