scholarly journals Fatigue Behavior of Rail Connections on Semi –High Speed and High Speed Rail Networks

Rail joint is the most vulnerable and weakest part in the rail structure. Bolted rail joints and welded rail joints are the most predominantly used rail joints. In recent times, continuous welded rail joints are widely used. The literature study exhibits that the performance of welded rail joints are comparatively better than the bolted rail joints. This project mainly deals with the fatigue behavior of welded rail joints subjected to normal speed, semi-high speed and high speed rail networks with respect to rail joint location on the sleeper. The rail joint kept on two conditions, mainly rail joint on top of the sleeper and rail joint in between the sleepers. The model was created and the respective finite element analyses were made in ANSYS Workbench software. The rail joint was analyzed for the movement of wheel load on the rail for all speed conditions mentioned. The butt joint was given at the region of rail joint and the fatigue life results were obtained in the analyses made in ANSYS Workbench. The analyses methods covers the rail and wheel model creation, application of corresponding loads and supports and the simulation results were obtained. The simulation results portrays that when the continuous welded rail joint is located on the sleeper, the fatigue life of the rail joint in both the normal speed and semi-high speed conditions is higher when compared to the fatigue life of rail joint in high speed condition. And also when the welded rail joints are located in between two sleepers the rail joint in high speed rail networks provide increased fatigue life when compared with the rail joints located in normal and semi high speed conditions. This research provides a beneficiary effect and serves as a base for increasing the fatigue life of the rail networks.

2017 ◽  
Vol 908 ◽  
pp. 012026 ◽  
Author(s):  
P Gurubaran ◽  
M Afendi ◽  
M A Nur Fareisha ◽  
M S Abdul Majid ◽  
I Haftirman ◽  
...  

2018 ◽  
Vol 175 ◽  
pp. 03048
Author(s):  
Yongliang Yuan

In order to investigate the performance of the mobile maintenance platform, Ansys Workbench was used to analyze the strength analysis of the mobile maintenance platform. The deformation, stress, and strain were obtained. The fatigue module was used to analyze the fatigue of the mobile maintenance platform and the fatigue life based on the cumulative fatigue damage theory. The simulation results show that the strength of the mobile maintenance platform is sufficient, and its lifetime is as high as 19.8 years. The mobile maintenance platform has a large space for optimization and this paper provides a basis for future structural optimization design.


Author(s):  
James R. Blaze ◽  
Jay Gowan ◽  
Stephen Byers

Paper and PowerPoint presentation format will describe process for much faster logistics and construction management of new high speed track construction and improvement of existing FRA track from FRA Class 4 to Class 5 and Class 6 standards on existing freight railway lines. This process involves an integration of the long materials supply chain together with rapid process state of the art construction machines. These machines have been used in both European and Chinese high speed construction projects. Huge gains in new track kilometers and miles per day have been made in the last decade on the machinery side of the equation. The authors will show several case studies. The critical key to these production rates has been in the integration of materials ordering and prepositioning. The economic advantage is that track time construction windows that delay other passing trains can be reduced at tremendous savings in service and operational costs to the operators already providing service in these new high speed corridors and construction zones. Examples and calculations are shown.


Author(s):  
Kaijun Zhu ◽  
J. Riley Edwards ◽  
Yu Qian ◽  
Bassem O. Andrawes

As one of the weakest locations in the track superstructure, the rail joint encounters different types of defects and failures, including rail bolt-hole cracking, rail head-web cracking or separation, broken or missing bolts, and joint bar cracking. The defects and failures are mainly initiated by the discontinuities of both geometric and mechanical properties due to the rail joint, and the high impact loads induced by the discontinuities. Continuous welded rail (CWR) overcomes most disadvantages of the rail joints. However, a large number of rail joints still exist in North American Railroads for a variety of reasons, and bolted joints are especially prevalent in early-built rail transit systems. Cracks are often found to initiate in the area of the first bolt-hole and rail-head-to-web fillet (upper fillet) at the rail end among bolted rail joints, which might cause further defects, such as rail breaks or loss of rail running surface. Previous research conducted at the University of Illinois at Urbana-Champaign (UIUC) has established an elastic static Finite Element (FE) model to study the stress distribution of the bolted rail joint with particular emphasis on rail end bolt-hole and upper fillet areas. Based on the stress calculated from the FE models, this paper focuses on the fatigue performance of upper fillet under different impact wheel load factors and crosstie support configurations. Preliminary results show that the estimated fatigue life of rail end upper fillet decreases as impact factor increases, and that a supported joint performs better than a suspended joint on upper fillet fatigue life.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110662
Author(s):  
Yan Liu ◽  
Xiujie Jiang ◽  
Qiutong Li ◽  
Huan Liu

With the development of rail transportation, the fatigue failure of rail clips has become an issue, which affects the operational safety of trains. In this study, reasons for the fatigue failure of rail clips were investigated to improve their service life. A digital image correlation (DIC) technique was conducted to obtain strain fields, vibration modes, and natural frequencies of a rail clip. The strain and displacement of a rail clip under dynamic cyclic loading were also obtained. A fastener system refinement model was developed to analyze the static, dynamic, and modal responses of the clip. The experimental tests and modal simulation results were mutually verified. The fatigue life was analyzed based on the verified FE model. The results revealed that the maximum strain and minimum fatigue life occur at the heel of the clip, in good agreement with the actual fracture position. As the amplitude and frequency of dynamic cyclic load increased, the fatigue life of the clip decreased sharply. Moreover, the normal wheel–rail force accompanied by high-frequency rail corrugations accelerated crack initiation and reduced the fatigue life. The findings of this study provide guidance for improving the service life of rail clips.


2005 ◽  
Author(s):  
Steven M. Chrismer

Recently the FRA has proposed a reduction in the maximum allowable net axle lateral load limit from the current 50 percent of static vertical axle load (NAL/V limit = 50%) to less than 40 percent depending, in part, on the basis of FRA’s lateral track strength model, TREDA. Such a reduction could indirectly result in limiting the maximum speed of high speed passenger trains to the equivalent of 7 inches (178 mm) cant deficiency. This paper reports on the author’s investigation of selected assumptions and calculations made in TREDA. Improvements to the model are recommended and a revised NAL/V relationship is proposed, derived from an independent analysis of the driving and resisting forces. Finally, a vehicle dynamic analysis is performed to determine how the author’s proposed revised NAL/V limit would affect 9-inch (229 mm) cant deficiency operation as the high speed rail industry is now considering.


Author(s):  
Larisa Parkhomenko

This paper analyzes the trends of high-speed and high-speed passenger trains on the railways of Ukraine on the basis of market research and analysis of passenger traffic plying the effectiveness of conventional and high-speed passenger trains within the existing operating model railroad network. The analysis of changes in the competitiveness of rail transport in the passenger transportation market in the implementation of high-speed and high-speed rail passenger traffic. This paper analyzes the effectiveness of most profitable running of passenger trains normal speed (speed up to 120 km/h ) and passenger trains new Hyundai and Skoda (speed up to 160 km/h), which began to run from 2012 on the railway network inUkraine. We prove the efficiency of high-speed railway passenger transportation to Ukraine on the basis of an extensive network of specialized upgraded lines on which trains are capable of speeds up to 180 km/hwith the possibility of partial interaction with conventional network.


2014 ◽  
Vol 984-985 ◽  
pp. 233-237
Author(s):  
V. Mathan ◽  
S. Sheeju Selva Roji ◽  
J. Jebeen Moses

AA2024-T4 Al substrate with and without bonded E-glass/Epoxy patches were undergone for the experimental study of tensile strength and fatigue behavior. The Al substrates were machined to edge cracked specimens. The strength of the substrate was decreased due to the presence of crack when compared with un-cracked Al substrate. The patches were made in liquid epoxy resin instead of film adhesives and it was discovered that the both static strength and fatigue life were significantly increased for bonded composite patches. Different ply patches were applied on the cracked Al substrates and it was noted that the 9ply patch demonstrated its effectiveness in preventing static failure and increasing fatigue life of the cracked substrates


Author(s):  
P. Zhao ◽  
Z. Xu ◽  
M. Wang ◽  
R.D.K. Misra ◽  
G. Xie ◽  
...  

Author(s):  
Changfeng Yao ◽  
Lufei Ma ◽  
Yongxia Du ◽  
Junxue Ren ◽  
Dinghua Zhang

The influence of shot-peening parameters on surface integrity of 7055 aluminum alloy is investigated based on shot-peening experiments. Surface integrity measurements, fatigue fracture analysis and fatigue life tests are conducted to reveal the effect of surface integrity on crack initiation and fatigue life. The results show that surface roughness increases significantly, and irregular pits and bumps appear on surface after shot-peening; grain on subsurface is refined and produces a shift and distortion in the pellets hit direction; compressive stress can be detected on all machined surfaces. Shot-peening parameters have significant impact on micro-hardness. In comparison with the milled specimen, fatigue life of peened specimens is improved by about 23.8, 3.96 and 1.01 times. Fatigue source zone transfers from stress concentration location on surface to subsurface due to the lower surface roughness and lager residual compressive stress.


Sign in / Sign up

Export Citation Format

Share Document