scholarly journals Fake News Detection with Machine Learning

As the internet is becoming part of our daily routine there is sudden growth and popularity of online news reading. This news can become a major issue to the public and government bodies (especially politically) if its fake hence authentication is necessary. It is essential to flag the fake news before it goes viral and misleads the society. In this paper, various Natural Language Processing techniques along with the number of classifiers are used to identify news content for its credibility.Further this technique can be used for various applications like plagiarismcheck , checking for criminal records.

Designs ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 42
Author(s):  
Eric Lazarski ◽  
Mahmood Al-Khassaweneh ◽  
Cynthia Howard

In recent years, disinformation and “fake news” have been spreading throughout the internet at rates never seen before. This has created the need for fact-checking organizations, groups that seek out claims and comment on their veracity, to spawn worldwide to stem the tide of misinformation. However, even with the many human-powered fact-checking organizations that are currently in operation, disinformation continues to run rampant throughout the Web, and the existing organizations are unable to keep up. This paper discusses in detail recent advances in computer science to use natural language processing to automate fact checking. It follows the entire process of automated fact checking using natural language processing, from detecting claims to fact checking to outputting results. In summary, automated fact checking works well in some cases, though generalized fact checking still needs improvement prior to widespread use.


IoT ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 218-239 ◽  
Author(s):  
Ravikumar Patel ◽  
Kalpdrum Passi

In the derived approach, an analysis is performed on Twitter data for World Cup soccer 2014 held in Brazil to detect the sentiment of the people throughout the world using machine learning techniques. By filtering and analyzing the data using natural language processing techniques, sentiment polarity was calculated based on the emotion words detected in the user tweets. The dataset is normalized to be used by machine learning algorithms and prepared using natural language processing techniques like word tokenization, stemming and lemmatization, part-of-speech (POS) tagger, name entity recognition (NER), and parser to extract emotions for the textual data from each tweet. This approach is implemented using Python programming language and Natural Language Toolkit (NLTK). A derived algorithm extracts emotional words using WordNet with its POS (part-of-speech) for the word in a sentence that has a meaning in the current context, and is assigned sentiment polarity using the SentiWordNet dictionary or using a lexicon-based method. The resultant polarity assigned is further analyzed using naïve Bayes, support vector machine (SVM), K-nearest neighbor (KNN), and random forest machine learning algorithms and visualized on the Weka platform. Naïve Bayes gives the best accuracy of 88.17% whereas random forest gives the best area under the receiver operating characteristics curve (AUC) of 0.97.


Author(s):  
Anurag Langan

Grading student answers is a tedious and time-consuming task. A study had found that almost on average around 25% of a teacher's time is spent in scoring the answer sheets of students. This time could be utilized in much better ways if computer technology could be used to score answers. This system will aim to grade student answers using the various Natural Language processing techniques and Machine Learning algorithms available today.


Author(s):  
Roy Rada

The techniques of artificial intelligence include knowledgebased, machine learning, and natural language processing techniques. The discipline of investing requires data identification, asset valuation, and risk management. Artificial intelligence techniques apply to many aspects of financial investing, and published work has shown an emphasis on the application of knowledge-based techniques for credit risk assessment and machine learning techniques for stock valuation. However, in the future, knowledge-based, machine learning, and natural language processing techniques will be integrated into systems that simultaneously address data identification, asset valuation, and risk management.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krishnadas Nanath ◽  
Supriya Kaitheri ◽  
Sonia Malik ◽  
Shahid Mustafa

Purpose The purpose of this paper is to examine the factors that significantly affect the prediction of fake news from the virality theory perspective. The paper looks at a mix of emotion-driven content, sentimental resonance, topic modeling and linguistic features of news articles to predict the probability of fake news. Design/methodology/approach A data set of over 12,000 articles was chosen to develop a model for fake news detection. Machine learning algorithms and natural language processing techniques were used to handle big data with efficiency. Lexicon-based emotion analysis provided eight kinds of emotions used in the article text. The cluster of topics was extracted using topic modeling (five topics), while sentiment analysis provided the resonance between the title and the text. Linguistic features were added to the coding outcomes to develop a logistic regression predictive model for testing the significant variables. Other machine learning algorithms were also executed and compared. Findings The results revealed that positive emotions in a text lower the probability of news being fake. It was also found that sensational content like illegal activities and crime-related content were associated with fake news. The news title and the text exhibiting similar sentiments were found to be having lower chances of being fake. News titles with more words and content with fewer words were found to impact fake news detection significantly. Practical implications Several systems and social media platforms today are trying to implement fake news detection methods to filter the content. This research provides exciting parameters from a viral theory perspective that could help develop automated fake news detectors. Originality/value While several studies have explored fake news detection, this study uses a new perspective on viral theory. It also introduces new parameters like sentimental resonance that could help predict fake news. This study deals with an extensive data set and uses advanced natural language processing to automate the coding techniques in developing the prediction model.


Author(s):  
Dr. K. Suresh

The current way of checking answer scripts is hectic for the college. They need to manually check the answers and allocate the marks to the students. Our proposed system uses Machine Learning and Natural Language Processing techniques to beat this. Machine learning algorithms use computational methods to find out directly from data without hopping on predetermined rules. NLP algorithms identify specific entities within the text, explore for key elements during a document, run a contextual search for synonyms and detect misspelled words or similar entries, and more. Our algorithm performs similarity checking and also the number of words associated with the question exactly matched between two documents. It also checks whether the grammar is correctly used or not within the student's answer. Our proposed system performs text extraction and evaluation of marks by applying Machine Learning and Natural Language Processing techniques.


Sign in / Sign up

Export Citation Format

Share Document