scholarly journals Follicle Detection in Ultrasound Images using Adaptive Clustering Algorithms and Empirical Mode Decomposition

Ultrasound Imaging is one of the techniques used to study inside human body with images generated using high frequency sounds waves. The applications of ultrasound images include examination of human body parts such as Kidney, Liver, Heart and Ovaries. This paper mainly concentrates on ultrasound images of ovaries.Monitoring of follicle is important in human reproduction. This paper presents a method for follicle detection in ultrasound image of ovaries using Adaptive data clustering algorithms. The main requirements for any clustering algorithm are to initialize the value of K, i.e. the number of clusters. Estimating this K value is difficult task for given data. This paper presents adaptive data clustering algorithm which generates accurate segmentation results with simple operation and avoids the interactive input K (number of clusters) value for segmentation. The results represent adaptive data clustering algorithms are better than normal algorithms for clustering in ultrasound image segmentation. After segmentation, using the region properties of the image, the follicles in the ovary image are identified. The proposed algorithm is tested on sample ultrasound images of ovaries for identification of follicles and with the region properties, the ovaries are classified into categories, normal, cystic and polycystic ovary with its geometric properties.

2013 ◽  
Vol 328 ◽  
pp. 463-467 ◽  
Author(s):  
Xiao Bo Liu ◽  
Bei Bei Deng ◽  
Liang Ni Shen

Aiming at the problem about initial clustering center was randomly assigned in K-means clustering algorithm, the improved K-means clustering algorithm based on hierarchical clustering algorithm and K-means clustering algorithm was proposed in this paper. In the improved algorithm, first of all K was calculated by hierarchical clustering. When K was determined, K-means clustering was implemented. The results of the aero-engine vibration data clustering shown that not only the k value was to quickly and accurately determined, but also the number of clusters can be reduced and higher computing efficiency can be attained by the improved K-means clustering algorithm.


Author(s):  
M. Jayanthi Rao ◽  
Dr. R. Kiran Kumar

Ultrasound Imaging is one of the technique used to study inside human body with images generated using high frequency sounds waves. The applications of ultrasound images include examination of human body parts such as Kidney, Liver, Heart and Ovaries. This paper mainly concentrates on ultrasound images of ovaries. The detection of follicles in ultrasound images of ovaries is concerned with the follicle monitoring during the diagnostic process of infertility treatment of patients.Monitoring of follicle is important in human reproduction. This paper presents a method for follicle detection in ultrasound images using Bidimensional Empirical Mode Decomposition and Mathematical morphology. The proposed algorithm is tested on sample ultrasound images of ovaries for identification of follicles and classifies the ovary into three categories, normal ovary, cystic ovary and polycystic ovary. The experiment results are compared qualitatively with inferences drawn by medical expert manually and this data can be used to classify the ovary images.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Baicheng Lyu ◽  
Wenhua Wu ◽  
Zhiqiang Hu

AbstractWith the widely application of cluster analysis, the number of clusters is gradually increasing, as is the difficulty in selecting the judgment indicators of cluster numbers. Also, small clusters are crucial to discovering the extreme characteristics of data samples, but current clustering algorithms focus mainly on analyzing large clusters. In this paper, a bidirectional clustering algorithm based on local density (BCALoD) is proposed. BCALoD establishes the connection between data points based on local density, can automatically determine the number of clusters, is more sensitive to small clusters, and can reduce the adjusted parameters to a minimum. On the basis of the robustness of cluster number to noise, a denoising method suitable for BCALoD is proposed. Different cutoff distance and cutoff density are assigned to each data cluster, which results in improved clustering performance. Clustering ability of BCALoD is verified by randomly generated datasets and city light satellite images.


Author(s):  
Hind Bangui ◽  
Mouzhi Ge ◽  
Barbora Buhnova

Due to the massive data increase in different Internet of Things (IoT) domains such as healthcare IoT and Smart City IoT, Big Data technologies have been emerged as critical analytics tools for analyzing the IoT data. Among the Big Data technologies, data clustering is one of the essential approaches to process the IoT data. However, how to select a suitable clustering algorithm for IoT data is still unclear. Furthermore, since Big Data technology are still in its initial stage for different IoT domains, it is thus valuable to propose and structure the research challenges between Big Data and IoT. Therefore, this article starts by reviewing and comparing the data clustering algorithms that can be applied in IoT datasets, and then extends the discussions to a broader IoT context such as IoT dynamics and IoT mobile networks. Finally, this article identifies a set of research challenges that harvest a research roadmap for the Big Data research in IoT domains. The proposed research roadmap aims at bridging the research gaps between Big Data and various IoT contexts.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ze Dong ◽  
Hao Jia ◽  
Miao Liu

This paper presents a fuzzy clustering method based on multiobjective genetic algorithm. The ADNSGA2-FCM algorithm was developed to solve the clustering problem by combining the fuzzy clustering algorithm (FCM) with the multiobjective genetic algorithm (NSGA-II) and introducing an adaptive mechanism. The algorithm does not need to give the number of clusters in advance. After the number of initial clusters and the center coordinates are given randomly, the optimal solution set is found by the multiobjective evolutionary algorithm. After determining the optimal number of clusters by majority vote method, the Jm value is continuously optimized through the combination of Canonical Genetic Algorithm and FCM, and finally the best clustering result is obtained. By using standard UCI dataset verification and comparing with existing single-objective and multiobjective clustering algorithms, the effectiveness of this method is proved.


Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 177 ◽  
Author(s):  
Xuedong Gao ◽  
Minghan Yang

Clustering is one of the main tasks of machine learning. Internal clustering validation indexes (CVIs) are used to measure the quality of several clustered partitions to determine the local optimal clustering results in an unsupervised manner, and can act as the objective function of clustering algorithms. In this paper, we first studied several well-known internal CVIs for categorical data clustering, and proved the ineffectiveness of evaluating the partitions of different numbers of clusters without any inter-cluster separation measures or assumptions; the accurateness of separation, along with its coordination with the intra-cluster compactness measures, can notably affect performance. Then, aiming to enhance the internal clustering validation measurement, we proposed a new internal CVI—clustering utility based on the averaged information gain of isolating each cluster (CUBAGE)—which measures both the compactness and the separation of the partition. The experimental results supported our findings with regard to the existing internal CVIs, and showed that the proposed CUBAGE outperforms other internal CVIs with or without a pre-known number of clusters.


2011 ◽  
Vol 301-303 ◽  
pp. 1133-1138 ◽  
Author(s):  
Yan Xiang Fu ◽  
Wei Zhong Zhao ◽  
Hui Fang Ma

Data clustering has been received considerable attention in many applications, such as data mining, document retrieval, image segmentation and pattern classification. The enlarging volumes of information emerging by the progress of technology, makes clustering of very large scale of data a challenging task. In order to deal with the problem, more researchers try to design efficient parallel clustering algorithms. In this paper, we propose a parallel DBSCAN clustering algorithm based on Hadoop, which is a simple yet powerful parallel programming platform. The experimental results demonstrate that the proposed algorithm can scale well and efficiently process large datasets on commodity hardware.


2013 ◽  
Vol 411-414 ◽  
pp. 1372-1376
Author(s):  
Wei Tin Lin ◽  
Shyi Chyi Cheng ◽  
Chih Lang Lin ◽  
Chen Kuei Yang

An approach to improve the regions of interesting (ROIs) selection accuracy automatically for medical images is proposed. The aim of the study is to select the most interesting regions of image features that good for diffuse objects detection or classification. We use the AHP (Analytic Hierarchy Process) to obtain physicians high-level diagnosis vectors and are clustered using the well-known K-Means clustering algorithm. The system also automatically extracts low-level image features for improving to detect liver diseases from ultrasound images. The weights of low-level features are adaptively updated according the feature variances in the class. Finally, the high-level diagnosis decision is made based on the high-level diagnosis vectors for the top K near neighbors from the medical experts classified database. Experimental results show the effectiveness of the system.


2021 ◽  
Author(s):  
Congming Shi ◽  
Bingtao Wei ◽  
Shoulin Wei ◽  
Wen Wang ◽  
Hai Liu ◽  
...  

Abstract Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined exact number of clusters, whereas, in practice, clusters are usually unpredictable. Although the Elbow method is one of the most commonly used methods to discriminate the optimal cluster number, the discriminant of the number of clusters depends on the manual identification of the elbow points on the visualization curve. Thus, experienced analysts cannot clearly identify the elbow point from the plotted curve when the plotted curve is fairly smooth. To solve this problem, a new elbow point discriminant method is proposed to yield a statistical metric that estimates an optimal cluster number when clustering on a dataset. First, the average degree of distortion obtained by the Elbow method is normalized to the range of 0 to 10. Second, the normalized results are used to calculate the cosine of intersection angles between elbow points. Third, this calculated cosine of intersection angles and the arccosine theorem are used to compute the intersection angles between elbow points. Finally, the index of the above computed minimal intersection angles between elbow points is used as the estimated potential optimal cluster number. The experimental results based on simulated datasets and a well-known public dataset (Iris Dataset) demonstrated that the estimated optimal cluster number obtained by our newly proposed method is better than the widely used Silhouette method.


2021 ◽  
Author(s):  
BAICHENG LV ◽  
WENHUA WU ◽  
ZHIQIANG HU

Abstract With the widely application of cluster analysis, the number of clusters is gradually increasing, as is the difficulty in selecting the judgment indicators of cluster numbers. Also, small clusters are crucial to discovering the extreme characteristics of data samples, but current clustering algorithms focus mainly on analyzing large clusters. In this paper, a bidirectional clustering algorithm based on local density (BCALoD) is proposed. BCALoD establishes the connection between data points based on local density, can automatically determine the number of clusters, is more sensitive to small clusters, and can reduce the adjusted parameters to a minimum. On the basis of the robustness of cluster number to noise, a denoising method suitable for BCALoD is proposed. Different cutoff distance and cutoff density are assigned to each data cluster, which results in improved clustering performance. Clustering ability of BCALoD is verified by randomly generated datasets and city light satellite images.


Sign in / Sign up

Export Citation Format

Share Document