scholarly journals Multilayer Stacked Microstrip Patch Antenna for 5G Applications Operating in Millimeter Wave Band.

The paper presents a multilayer stacked micro strip patch antenna specially for 5G applications[1]. It is a 2x2 patch array built in three layers with top layer comprising of four patches and bottom layer will be the ground plane whereas the middle layer is meant for achieving higher gain and wide bandwidth. The gain of the antenna array is found to be 11.66 dBi. The impedance bandwidth of the array antenna is found to be greater than 10%. The reflection coefficient of the array is calculated as -15.15 dB.

Author(s):  
Anubhuti Khare ◽  
Rajesh Nema

In this paper, optimization of a microstrip patch antenna is presented. The optimization uses a genetic algorithm in the IE3DTM Simulator. The optimization is done in several steps, first by changing the position of parasitic patches on the top layer, second by placing a feeding patch at the middle layer of geometry, and third by indirect coupling between the top and middle layer patches. Overall, we have performed many possible iterations and found appropriate geometry. From this appropriate geometry we have achieved maximum directional gain (6.2–8.8 dBi) over a 6 GHz bandwidth slot, 38% impedance bandwidth of the X-band and 14.8% impedance bandwidth of the Ku-band. The broadband frequency of operation is demonstrated by single geometry. The geometry of a single probe fed rectangular microstrip antenna incorporating a slot, gap coupled with a parasitic and an active patch on geometry, has been studied. We have investigated the height between active and parasitic patches as 0.0525λ and the height between parasitic patches itself as 0.0525λ. We have investigated the enhancement in maximum directional gain by stacking geometry with one active patch and two parasitic patches of different dimensions. This optimized antenna is used for X-band and Ku-band applications. The hardware validation and simulation results are matched to the proposed design.


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


Author(s):  
Kalyan Mondal

In this work, a broadband high gain frequency selective surface (FSS)-based microstrip patch antenna is proposed. The dimensions of the microstrip antenna and proposed FSS are [Formula: see text] and [Formula: see text]. A broadband high gain reference antenna has been selected to improve antenna performance. The reference antenna offers 1.2[Formula: see text]GHz bandwidth with 6.03[Formula: see text]dBi peak gain. Some modifications have been done on the patch and ground plane to enhance the bandwidth and gain. The impedance bandwidth of 7.70[Formula: see text]GHz (3.42–11.12[Formula: see text]GHz) with 4.9 dBi peak gain is achieved by the microstrip antenna without FSS. The antenna performance is improved by using FSS beneath the antenna structure. The maximum impedance bandwidth of 7.70[Formula: see text]GHz (3.32–11.02[Formula: see text]GHz) and peak gain of 8.6[Formula: see text]dBi are achieved by the proposed antenna with FSS. Maximum co- and cross-polarization differences are 21[Formula: see text]dB. The simulation and measurement have been done using Ansoft Designer software and vector network analyzer. The measured results are in good parity with the simulated one.


2014 ◽  
Vol 8 (2) ◽  
pp. 237-242 ◽  
Author(s):  
Sudeep Baudha ◽  
Dinesh Kumar Vishwakarma

This paper presents a simple broadband planar monopole microstrip patch antenna with curved slot and partial ground plane. The proposed antenna is designed and fabricated on commercially available FR4 material with εr = 4.3 and 0.025 loss tangent. Bandwidth enhancement has been achieved by introducing a curved slot in the patch and optimizing the gap between the patch and the partial ground plane and the gap between the curved slot and the edge of the patch. Simulated peak gain of the proposed antenna is 4.8 dB. The impedance bandwidth (defined by 10 dB return loss) of the proposed antenna is 109% (2–6.8 GHz), which shows bandwidth enhancement of 26% as compared with simple monopole antenna. The antenna is useful for 2.4/5.2/5.8-GHz WLAN bands, 2.5/3.5/5.5-GHz WiMAX bands, and other wireless communication services. Measured results show good agreement with the simulated results. The proposed antenna details are described and measured/simulated results are elaborated.


This research article gives a detailed insight of the design, simulation of a compact circular shaped microstrip patch antenna that is fed using a coplanar waveguide feed (CPW for practical wireless communication applications). The antenna is typically designed for Ultra wideband (1.46-6GHz), Bluetooth (2.4GHz), ZIGBEE (2.4GHz), WLAN (5.15- 5.35 GHz and 5.725- 5.825), Wi-Fi (2.4-2.485GHz) and HIPERLAN-2(5.15 - 5.35 GHz and 5.470 -5.725GHz) wireless applications with stop band characteristics for the H (partial C band). The proposed antenna has an overall packaged structure dimensions of 78 x75 x1.605 mm3 and is fabricated on FR4 substrate as a circular patch antenna with a coplanar ground .The commercially available laminate FR4 substrate that is used has a dielectric constant of 4.4, height of 1.6mm and a loss tangent of 0.0024.The prospective antenna shows a simulated impedance bandwidth of 4.54 GHz. The coplanar waveguide feeding used with this antenna helps in improving antenna performance in terms of its impedance bandwidth as this geometry helps in creating multiple current loops at the antenna structure, thereby exciting nearby frequencies that merge to show a broadband of operation. The antenna’s operational bandwidth is also improved by the concept of modified ground, in which triangular and rectangular shapes are added symmetrically on both sides of ground plane that provide a better fringing effect and hence an improved bandwidth.


Author(s):  
Akanksha Gupta ◽  
D K Srivastava ◽  
J.P. Saini

<p class="Author">When a patch is placed close to the fed patch, get excited due to parasitic coupling between the two elements. This proposed work presents theoretical analysis of rectangular gap coupled microstrip patch antenna (R-GCMSA) using circuit concept model, and the effect of gap(g), feed width (W<sub>f</sub>), and feed length on performance of the impedance bandwidth is also studied, it is observe as the gap between the parasitic element is increased resonant frequency shifted towards the parasitic patch resonant frequency for broadening the impedance bandwidth. The maximum impedance bandwidth for the proposed antenna design is 12.7% in the frequency range of 3.24-3.7GHz measured, with rectangular shape ground plane size 6030m.m<sup>2</sup>.the highest directivity achieved is 4dBi.The proposed design is simple in structure and compact in size, proposed design is simulated on IE3D Microwave simulator, the simulated result is in good agreement with obtained theoretical and measured results.</p>


2019 ◽  
Vol 7 (1) ◽  
pp. 01-03
Author(s):  
Srashti Sharma ◽  
Vandana Vikas Thakare

In the present paper a micro strip patch antenna with DGS for GSM application is designed and simulated at 1.8 GHz frequency. DGS is applied in the shape of circular rings on the ground plane. Without DGS the return loss is -12 dB, which is further improved to -22dB by applying DGS. The simulated results such as impedance, bandwidth, directivity, gain and radiation pattern are analyzed and compared for with and without DGS.


2012 ◽  
Vol 1 (2) ◽  
pp. 97-106
Author(s):  
Sanyog Rawat ◽  
K K Sharma

In this paper a new geometry of circularly polarized patch antenna is proposed with improved bandwidth. The radiation performance of proposed patch antenna is investigated using IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna. The simulated return loss, axial ratio and impedance with frequency for the proposed antenna are reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slots, the impedance bandwidth can be enhanced upto 10.15% as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.DOI: 10.18495/comengapp.12.097106


Sign in / Sign up

Export Citation Format

Share Document