scholarly journals Experimental Study on Fractional Substitute of Cement with Glass Powder and Egg Shell Powder

Author(s):  
K. Srinivasan ◽  
◽  
A. Manikandan ◽  
S. Manjupriya ◽  
◽  
...  

Glass waste & Egg Shell Powder cannot be processed for useful applications and may end up in a landfill. In India nearly 30 tonnes of Glass waste in every metropolitan city generated every year. This establishes the ecological problem and is measured an additional problem on the previouslyclose-fitting landfill space.This article studies the possibility of using post-consumer Glass Waste Powder and Egg Shell in Powder form as a fractional substitute for conservative cement on concrete. During manufacturing of cement it emits a huge carbon di oxide and cause various effect to atmosphere. In this project tried to minimize the usage of cement by partial replacement of waste material from general utilities. Here I replaced cement by partial as glass powder and egg shell powder with a percentage of 0 %, 20%, 30%, and 40% and for its compressive strength up to 7, 14 and 28 Ages evaluate the strength properties. Comparison result has obtained by cube test & split tensile test. Since now a day’s the developing and developed countries are facing lack of post consumer dumping site and it has become extremely serious difficulty. This waste product should convert resource of by-product to control environmental pollutions.

In present scenario concrete is highly consumed material in construction field due to its advantages, because of this the natural resources are depleting day by day at an alarming rate and there is an immediate need for finding alternate materials to the natural materials in concrete. In this paper an effort is made to find alternate partial replacement materials for cement and fine aggregate (FA). M40 grade concrete is adopted and the cement was replaced with egg shell powder with different percentages of 5%, 10% and 15%. The optimum percentage egg shell powder (ESP) is obtained at 10%. At optimum ESP the FA is replaced with Quarry Dust (QD) with percentages of 25%, 50%and75%. The maximum strength properties are obtained at 10% ESP and 50% QD and the concrete is also durable at 10% ESP and 50% QD with Water Cement Ratio is 0.38.


2018 ◽  
Vol 7 (3.35) ◽  
pp. 22
Author(s):  
V. Murugesh ◽  
Dr. N. Balasundaram ◽  
Dr. T. Senthil Vadivel

Cement is the main constituent ingredient in concrete. Now days many investigations undergone for substitute of cement due to green houses effect and global warming  .Many new products like rice husk ash, egg shell powder, baggage ash, etc are used as an effluent replacement material for cement. The new and Practical material for substitute of cement is water hyacinth ash .Water hyacinth ash (WHA), is used as an effectual replacement of partial cement, and it has been proved in several characteristics of concrete. The main important parameters in concrete are strength, durability and workability. In this paper, 10 % of cement replaced by water hyacinth ash   to investigate the effects of WHA on  durability and Strength  in concretes. On this basis, specimens were engrossed in water and acid to study the absorption property, acid attack and compared to conventional concrete. The test results show that replacement of cement by WHA in concrete has improved the parameters of concrete. 


2019 ◽  
Vol 50 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Elżbieta Horszczaruk ◽  
Piotr Brzozowski

The utilization of solid waste materials or industrial waste as partial substitution of cement is growing in construction industry all around world. Less cement consumption causes consequently reduction in CO2 emission into the atmosphere and reduction in energy consumption. This paper examines the possibility of using finely ground waste glass as a partial replacement for cement and as a sealing admixture. Glass powder used in the research was prepared from the glass waste obtained from a local recycling company. Glass cullet made of brown glass, which after rinsing to remove sugars and other impurities, was dried and ground to a fraction below 125 μm.This paper is the revised version of the paper that has been published in the Proceedings of the Creative Construction Conference 2018 (Horszczaruk and Brzozowski, 2018).


The study of strength behaviour of M20 grade concrete, by exchanging the cement partly by powder of egg shell, for which an experimental tests were carried out and the effect of egg shell powder (0%,5%.10%,15%) on compressive strength characteristics were studied. The result of this present investigation shows that the replacement of 5% of cement with egg shell powder attains the maximum compressive strength. The best and economical percentage exchange of replacement of powder of egg shell (ESP) with cement is about 5% and also reduces the cost of concrete with the use of powder of egg shell, which is available freely as raw material and then it is grinded well to make powder. The egg shell is available from municipal solid waste and is mixed in powder form in concrete by exchanging the cement and is found that 5% replacement is very effective in the improvement of strength properties when compared to the conventional concrete. Also the exchangement of 5% ESP in cement gives higher split tensile strength as compared to other cement ingredient mixtures. In this study, it is fixed that 0.45 is the w/c ratio and it produces medium degree of workability which is suitable for most of the concrete mixtures on site. The addition of eggshell powder as filler in concrete has improved the strength of concrete and also improved and better split tensile strength.


2021 ◽  
Vol 896 (1) ◽  
pp. 012024
Author(s):  
A Etyangat ◽  
P Tiboti ◽  
M Kayondo ◽  
H Bakamwesiga

Abstract Cement and concrete production account for between 5% to 8% of global CO2. Waste PET plastic and glass waste have also brought about rapid environmental degradation. Glasscrete was developed with glass powder of fewer than 75 microns (has pozzolanic properties) that performed 14% better than concrete at 90 days. So, to further this effort, this experimental research considered the glass create C20 (at 10% cement replacement) and added PET fibers (of aspect ratio 25) at different percentages of 1%, 2%, 3%, and 4% the weight of cement in a bid to optimize the grasscrete performance and its ability to absorb PET waste. Glasscrete being extremely brittle alone, failed by cracking at all percentage PET additions, thus improving its safety factor. A 1% PET fiber addition to grasscrete exhibited the highest strength properties compared to other percentage additions while having a durability of 1.5% better than concrete. It is thus recommended for structural uses as it outperforms concrete. Despite this, a 1% fiber addition decreased grasscrete’s compressive strength by at least 3.5% at 28 days and 6% at 90 days but improved the flexural strength by 5.4% at 28 days and 0.8% at 90 days testing.


Author(s):  
Balimidi Harinath ◽  
Paladin Durga Varaprasad ◽  
Utti Lakshmi Kanth ◽  
Yerrapureddi Harikumar Reddy ◽  

Sign in / Sign up

Export Citation Format

Share Document