scholarly journals GA-SMC Technique for Photovoltaic Systems under Non-Homogenous Meteorological Conditions

When the photovoltaic sources are subjected to the partial shading (PS) effect, the PV modules are consequently subjected to the different levels of the irradiation. Indeed, when the phenomenon of the partial shading occurs, the Power-Voltage curve of the PV panel presents several points of maximum power. These points are divided between local and global, where the global maximum point presents the superior maximum, and the local maximum points present the inferior maximums compared to the global one. In fact, the classical Maximum Power Point Tracking (MPPT) techniques can not distinguish the global maximum power point, but can track only the first maximum found at the right hand of the Power-Voltage curve. Thus, in some cases, the classical techniques can cause the high drop of power. To solve this issue, this paper proposes a new approach based on the genetic algorithm (GA), because of its ability to optimize the solar panels’ output power production under the PSC. This optimization method is combined with the robust Sliding Mode Controller (SMC). Here, the GA is used in order to locate and generate the reference voltage corresponding to the global maximum power. While the sliding mode controller is used in order to track the reference voltage by acting on the duty cycle of the SEPIC converter. To examine the performance of the proposed method, the comparison with some hybrid controller, which are P&O-SMC, P&O-BSC, INC-BSC and INC-SMC, is performed. The results show the tracking performances of the proposed method, which are the accuracy and rapidity. Moreover, the results illustrates the ability of the proposed hybrid controller to detect the partial shading and to distinguish the Global Maximum Power Point.

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2228
Author(s):  
Carlos Restrepo ◽  
Nicolas Yanẽz-Monsalvez ◽  
Catalina González-Castaño ◽  
Samir Kouro ◽  
Jose Rodriguez

Among all the conventional maximum power point tracking (MPPT) techniques for a photovoltaic (PV) system that have been proposed, incremental conductance (INC) and perturb and observe (P&O) are the most popular because of their simplicity and ease of implementation. However, under partial shading conditions (PSCs), these MPPT algorithms fail to track the global maximum power point (GMPP) and instead converge into local maximum power points (LMPPs), resulting in considerable PV power loss. This paper presents a new hybrid MPPT technique combining the artificial bee colony (ABC) and P&O algorithms named ABC-P&O. The P&O technique is used to track the MPP under uniform irradiance, and only during irradiance variations is the ABC algorithm employed. The effectiveness of the proposed hybrid algorithm at tracking the GMPP, under both uniform and nonuniform irradiance conditions, was assessed by hardware-in-the-loop (HIL) tests employed by a dc–dc boost converter. Then, the ABC-P&O strategy was applied to obtain the voltage reference for the outer PI control loop, which provided the current reference to the discrete-time sliding-mode current control. The ABC-P&O algorithm has a reasonable computational cost, allowing the use of a commercial, low-priced digital signal controller (DSC) with outer voltage and inner current control loops. Many challenging tests validated that the proposed ABC-P&O technique converges fast to the GMPP with high efficiency and superior performance under different PSCs.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2521
Author(s):  
Alfredo Gil-Velasco ◽  
Carlos Aguilar-Castillo

There are multiples conditions that lead to partial shading conditions (PSC) in photovoltaic systems (PV). Under these conditions, the harvested energy decreases in the PV system. The maximum power point tracking (MPPT) controller aims to harvest the greatest amount of energy even under partial shading conditions. The simplest available MPPT algorithms fail on PSC, whereas the complex ones are effective but require high computational resources and experience in this type of systems. This paper presents a new MPPT algorithm that is simple but effective in tracking the global maximum power point even in PSC. The simulation and experimental results show excellent performance of the proposed algorithm. Additionally, a comparison with a previously proposed algorithm is presented. The comparison shows that the proposal in this paper is faster in tracking the maximum power point than complex algorithms.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 327 ◽  
Author(s):  
Muhammad Afzal Awan ◽  
Tahir Mahmood

Optimal energy extraction under partial shading conditions from a photovoltaic (PV) array is particularly challenging. Conventional techniques fail to achieve the global maximum power point (GMPP) under such conditions, while soft computing techniques have provided better results. The main contribution of this paper is to devise an algorithm to track the GMPP accurately and efficiently. For this purpose, a ten check (TC) algorithm was proposed. The effectiveness of this algorithm was tested with different shading patterns. Results were compared with the top conventional algorithm perturb and observe (P&O) and the best soft computing technique flower pollination algorithm (FPA). It was found that the proposed algorithm outperformed them. Analysis demonstrated that the devised algorithm achieved the GMPP efficiently and accurately as compared to the P&O and the FPA algorithms. Simulations were performed in MATLAB/Simulink.


2020 ◽  
Vol 13 (6) ◽  
pp. 241-254
Author(s):  
Anas Kamil ◽  
◽  
Mahmoud Nasr ◽  
Shamam Alwash ◽  
◽  
...  

The maximum power point tracking (MPPT) is an essential key to ensure that the photovoltaic (PV) system is operated at the highest possible power generation. This paper presents an efficient MPPT method for the PV system based on an enhanced particle swarm optimization algorithm to track the location of the global maximum power point, whatever its location changes in the search space under all environmental conditions, including the partial shading on strings. In this paper, the formulation of the conventional particle swarm optimization algorithm is enhanced to decrease the searching time and the oscillation of the generated output power as well as the power losses in the online tracking process. This enhancement can be achieved by utilizing a special time-varying weighting coefficient and removing the effect of some other coefficients in the conventional particle swarm optimization algorithm (PSO) that cause winding of the particles during the online tracking process. Test results verified the accuracy of the proposed method to track the global maximum power point with considering the effect of partial shading condition. The proposed method was also compared with other MPPT methods to verify the superiority of the proposed work. The obtained results reveal that the proposed method is effective to improve the tracking efficiency and reduce the tracking time and the number of iterations for the different irradiances and load conditions. The maximum number of iterations was 11 iteration and the highest tracking time was 0.273s with tracking efficiency of about 99.98%.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4971
Author(s):  
Hegazy Rezk ◽  
Ahmed Fathy

A significant growth in PV (photovoltaic) system installations have been observed during the last decade. The PV array has a nonlinear output characteristic because of weather intermittency. Partial shading is an environmental phenomenon that causes multiple peaks in the power curve and has a negative effect on the efficiency of the conventional maximum power point tracking (MPPT) methods. This tends to have a substantial effect on the overall performance of the PV system. Therefore, to enhance the performance of the PV system under shading conditions, the global MPPT technique is mandatory to force the PV system to operate close to the global maximum. In this paper, for the first time, a stochastic fractal search (SFS) optimization algorithm is applied to solve the dilemma of tracking the global power of PV system based triple-junction solar cells under shading conditions. SFS has been nominated because it can converge to the best solution at a fast rate. Moreover, balance between exploration and exploitation phases is one of its main advantages. Therefore, the SFS algorithm has been selected to extract the global maximum power point (MPP) under partial shading conditions. To prove the superiority of the proposed global MPPT–SFS based tracker, several shading scenarios have been considered. The idea of changing the shading scenario is to change the position of the global MPP. The obtained results are compared with common optimizers: Antlion Optimizer (ALO), Cuckoo Search (CS), Flower Pollination Algorithm (FPA), Firefly-Algorithm (FA), Invasive-Weed-Optimization (IWO), JAYA and Gravitational Search Algorithm (GSA). The results of comparison confirmed the effectiveness and robustness of the proposed global MPPT–SFS based tracker over ALO, CS, FPA, FA, IWO, JAYA, and GSA.


2019 ◽  
Vol 52 (7-8) ◽  
pp. 896-912
Author(s):  
Ravichandran Chinnappan ◽  
Premalatha Logamani ◽  
Rengaraj Ramasubbu

This article presents a reliable and efficient photovoltaic sliding mode voltage-controlled maximum power point tracking DC-DC converter–active power filter integration system to supply real power to grid. This integrated active power filter system performs power quality enhancement features to compensate current harmonics to make distortion-free grid supply current and reactive power employing nonlinear loads. The proposed proportional–integral–derivative–based sliding mode controller is designed with fixed-frequency pulse-width modulation based on equivalent control approach. The main objective of this paper is to design a photovoltaic system with a new sliding surface to force the photovoltaic voltage to follow the reference maximum power point voltage with the alleviation of slow transient response and disadvantages of chattering effects of variable-frequency hysteresis modulation sliding mode controller–maximum power point tracking. The perturbations caused by the uncertainties in climatic conditions and converter output bulk oscillations during grid integration are also mitigated. The features of the proposed photovoltaic–active power filter integration system are confirmed at different operating conditions through PSIM simulation software, and its performance is also compared with a conventional variable-frequency sliding mode-controlled maximum power point tracking. The obtained simulation and experimental results give good dynamic response under various operating conditions of environmental and local load conditions.


Sign in / Sign up

Export Citation Format

Share Document