scholarly journals Design of 4 Dof Robot ARM Based on Adaptive Neuro-Fuzzy (ANFIS) using Vision in Detecting Color Objects

In this paper, the design of robot arm mechanics uses 4 servo which is then said to be 4 DOF (degree of freedom). With the Arduino microcontroller used, it will regulate the movement of the arm 4 DOF robot as a base servo, shoulder servo, hand servo and grip servo. Adaptive Neuro Fuzzy Inference System (ANFIS) was applied in this arm 4 DOF robot model in the detection of colored objects. Assisted with programming to perfect the system that is applied to the Arduino microcontroller so that it can do color detection and color object retrieval. As a result, the design of DOF arm 4 robots using vision can take colored objects precisely

Author(s):  
Mujiarto Mujiarto ◽  
Asari Djohar ◽  
Mumu Komaro ◽  
Mohamad Afendee Mohamed ◽  
Darmawan Setia Rahayu ◽  
...  

<p>In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) based on Arduino microcontroller is applied to the dynamic model of 5 DoF Robot Arm presented. MATLAB is used to detect colored objects based on image processing. Adaptive Neuro Fuzzy Inference System (ANFIS) method is a method for controlling robotic arm based on color detection of camera object and inverse kinematic model of trained data. Finally, the ANFIS algorithm is implemented in the robot arm to select objects and pick up red objects with good accuracy.</p>


2018 ◽  
Vol 7 (4.36) ◽  
pp. 604
Author(s):  
P. Gopu ◽  
M. Dev Anand ◽  
. .

Ability of robot arm manipulation must be highly accurate and repeatable one. Performance uncertainty is causes by some noise factor. The effects of these factors were model to reduce the uncertainty of the robotic arm performance. In this paper highlights the prediction of output parameters robot cell data like X, Y and Z axis through Response Surface Methodology (RSM) and Adaptive Neuro Fuzzy Inference System (ANFIS) for reduce the performance variation of the robot. The input kinematic parameters like θ1, θ2, θ3, θ4, θ5 has been considered and the output multi objective parameters X, Y and Z axis has been converted in to single objective parameter. The graph which plots between parameters and the output response indicates the influence of the every single parameter for the performance output contribution. From the simulated values of Response Surface Methodology and Adaptive Neuro Fuzzy Inference System, the percentage of error obtained in Adaptive Neuro Fuzzy Inference System has minimum one when compared with Response Surface Methodology of prediction.  


Wahana Fisika ◽  
2016 ◽  
Vol 1 (2) ◽  
pp. 152 ◽  
Author(s):  
WS Mada Sanjaya ◽  
Dyah Anggraeni

Telah dilakukan penelitian yang menggambarkan implementasi pengenalan pola suara untuk mengontrol gerak robot arm 5 DoF dalam mengambil dan menyimpan benda. Dalam penelitian ini metode yang digunakan adalah Mel-Frequency Cepstrum Coefficients (MFCC) dan Adaptive Neuro-Fuzzy Inferense System (ANFIS). Metode MFCC digunakan untuk ekstraksi ciri sinyal suara, sedangkan ANFIS digunakan sebagai metode pembelajaran untuk pengenalan pola suara. Pada proses pembelajaran ANFIS data latih yang digunakan sebanyak 6 ciri. Data suara terlatih dan data suara tak terlatih digunakan untuk pengujian sistem pengenalan pola suara. Hasil pengujian menunjukkan tingkat keberhasilan, untuk data suara terlatih sebesar 87,77% dan data tak terlatih sebesar 78,53%. Sistem pengenalan pola suara ini telah diaplikasikan dengan baik untuk mengerakan robot arm 5 DoF berbasis mikrokontroler Arduino.


2017 ◽  
Vol 3 (1) ◽  
pp. 36-48
Author(s):  
Erwan Ahmad Ardiansyah ◽  
Rina Mardiati ◽  
Afaf Fadhil

Prakiraan atau peramalan beban listrik dibutuhkan dalam menentukan jumlah listrik yang dihasilkan. Ini menentukan  agar tidak terjadi beban berlebih yang menyebabkan pemborosan atau kekurangan beban listrik yang mengakibatkan krisis listrik di konsumen. Oleh karena itu di butuhkan prakiraan atau peramalan yang tepat untuk menghasilkan energi listrik. Teknologi softcomputing dapat digunakan  sebagai metode alternatif untuk prediksi beban litrik jangka pendek salah satunya dengan metode  Adaptive Neuro Fuzzy Inference System pada penelitian tugas akhir ini. Data yang di dapat untuk mendukung penelitian ini adalah data dari APD PLN JAWA BARAT yang berisikan laporan data beban puncak bulanan penyulang area gardu induk majalaya dari januari 2011 sampai desember 2014 sebagai data acuan dan data aktual januari-desember 2015. Data kemudian dilatih menggunakan metode ANFIS pada software MATLAB versi b2010. Dari data hasil pelatihan data ANFIS kemudian dilakukan perbandingan dengan data aktual dan data metode regresi meliputi perbandingan anfis-aktual, regresi-aktual dan perbandingan anfis-regresi-aktual. Dari perbandingan disimpulkan bahwa data metode anfis lebih mendekati data aktual dengan rata-rata 1,4%, menunjukan prediksi ANFIS dapat menjadi referensi untuk peramalan beban listrik dimasa depan.


Author(s):  
Angga debby frayudha ◽  
Aris Yulianto ◽  
Fatmawatul Qomariyah

Di era revolusi industry 4.0 terdapat banyak sekali kemudahan yang diberikan teknologi kepada manusia. Tentu ini akan menjadi baik apabila manusia mampu memanfaatkan hal tersebut dengan baik pula. Namun disisi lain juga bisa mengakibatkan dampak negative terhadap manusia, misalnya dengan adanya internet bisa mengakibatkan manusia melakukan penipuan di media social. Selain itu dengan canggihnya teknologi dapat menjadikan manusia menjadi malas yang bisa berimbas menurunnya kualitas sumber daya manusia. Maka dari itu untuk menghadapi hal ini perlu menyiapkan pendidikan yang baik.Pendidikan akan berjalan baik apabila lembaga yang mengurusnya berkompeten dalam melakukan tugasnya .Penulis coba memberikan ide untuk memprediksi kinerja pegawai Dinas Pendidikan Kabupaten Rembang menggunakan mentode ANFIS (Adaptive Neuro Fuzzy Inference System) guna untuk membantu lembaga tersebut menyeleksi maupun menilai kinerja karyawan demi meningkatkan kualitas dari segi sumber daya manusia. ANFIS merupakan jaringan adaptif yang berbasis pada sistem kesimpulan fuzzy (fuzzy inference system). Model penilaian kinerja pegawai di Dinas Pendidikan Kabupaten Rembang dengan menggunakan Adaptive Neuro-Fuzzy Inference System (ANFIS) menghasilkan penilaian  yang lebih baik dan akurat.  Hasil pengujian metode tersebut memiliki nilai akurasi 65%. Dengan metode ANFIS (Adaptive Neuro Fuzzy Inference System) dapat memprediksi kinerja karyawan sebagai salah satu pengambilan keputusan terhadap kinerja pegawai. Selain itu nantinya system penlaian kinerja pegawai akan lebih tertata dan efisien.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 286 ◽  
Author(s):  
Athanasios Bogiatzis ◽  
Basil Papadopoulos

Thresholding algorithms segment an image into two parts (foreground and background) by producing a binary version of our initial input. It is a complex procedure (due to the distinctive characteristics of each image) which often constitutes the initial step of other image processing or computer vision applications. Global techniques calculate a single threshold for the whole image while local techniques calculate a different threshold for each pixel based on specific attributes of its local area. In some of our previous work, we introduced some specific fuzzy inclusion and entropy measures which we efficiently managed to use on both global and local thresholding. The general method which we presented was an open and adaptable procedure, it was free of sensitivity or bias parameters and it involved image classification, mathematical functions, a fuzzy symmetrical triangular number and some criteria of choosing between two possible thresholds. Here, we continue this research and try to avoid all these by automatically connecting our measures with the wanted threshold using some Artificial Neural Network (ANN). Using an ANN in image segmentation is not uncommon especially in the domain of medical images. However, our proposition involves the use of an Adaptive Neuro-Fuzzy Inference System (ANFIS) which means that all we need is a proper database. It is a simple and immediate method which could provide researchers with an alternative approach to the thresholding problem considering that they probably have at their disposal some appropriate and specialized data.


Sign in / Sign up

Export Citation Format

Share Document